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Abstract 
Aviation has been facing a constant expansion since the first flight by an airplane was achieved, and 

nowadays the success of aviation, is closely linked with the success of local economies. On the other 

hand, the airline business is a challenging environment to thrive economically, due to the high costs and 
low profit margins involved. Hence, it is critical that airlines optimize their operation, in order to succeed 

in the long term, in this highly competitive business. Several models have been proposed in the literature 

to support the optimization of airline fleets, with the objective of minimizing the operational cost for the 

airline. On the other hand, the amount of literature dedicated to the optimization of the usage of airline’s 

fleets dedicated to Public Service Obligation (PSO) routes is much sparser. Based on the research 

developed by Pita et al. (2013), with case studies applied to the PSO networks of the Azores and 

Norway, this model is adapted, the objective of which is not only to minimize the direct cost to the airline, 
but also to minimize the total social costs. Then, the model is applied to a new case study based on a 

PSO network for the Greek islands, with key differences from the previous case studies such as strong 

competition from the ferry boat service.  
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Resumo 
 
O negócio da aviação tem estado em constante expansão desde que se realizou o primeiro voo com 

um avião e, atualmente o sucesso da aviação está fortemente correlacionado com o sucesso das 
economias locais. Por outro lado, esta é uma área de negócio onde não é fácil ter sucesso devido aos 

elevados custos e reduzidas margens de lucro. Assim, é crucial que as empresas otimizem a sua 

operação, de forma a se manterem em operação no longo prazo, neste mercado altamente competitivo. 

Vários modelos foram publicados na literatura, com a finalidade de otimização dos recursos das 

empresas, com o objetivo de minimizarem os custos para estas. Por outro lado, é comparativamente 

reduzida a quantidade de publicações dedicadas à otimização de recursos de empresas dedicadas a 

redes de obrigações de serviço público. Baseado nas publicações por Pita et al. (2013), com casos de 

estudo aplicados às redes OSP nos Açores e Noruega, o modelo utilizado nestas publicações é 
adaptado. O objetivo  destes modelos é, para além da redução do custo para as empresas, também a 

maximização da qualidade do serviço para os passageiros, e é aplicado a dois casos de estudo situados 

nas ilhas gregas, com características diferentes, nomeadamente a concorrência do transporte por 

barco. 

 

 

 

Palavras-chave: Obrigações de Serviço Público; Ilhas Gregas; Programação de Voos e Atribuição de 

Frota; Programação Linear Inteira; Otimização 
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1. Introduction 
 

Airports are key drivers of economic development for their respective catchment area( [1], [2], [3]). This 

is even visible in a global context, in extreme cases such as Dubai, which is nowadays a thriving emirate 
of the United Arab Emirates (UAE). This happened after significant development and growth, due to the 

strong investment and clear strategy which led to investing in their airport and airline carrier to make it 

a global hub for airline transport [4]. 

 

Due to the close dependence between the performance of the aviation business and economies, it is 

very important to set conditions that will allow this business to thrive, with the associated economic 

benefits. Besides this, the airline business is known to operate in challenging conditions. This is 
explained by the high costs and low profit margins involved, making it crucial for an airline’s long-term 

survival to use its resources in the most optimal way possible. There is extensive literature analyzing 

options to increase the operating margins of airlines (such as [5], [6], [7]). 

 

Also, there is extensive literature addressing specifically the problem of optimizing the airlines’ flight 

scheduling and fleet assignment (FSFA). The objective of such literature is to reduce the total 

operational cost for the airline, as this reduction contributes significantly to a better balance sheet of 

airline companies. The result is usually the suppression of frequencies in less profitable routes and 
allocation of the resources to the most profitable ones. 

 

However, there are other routes, whose main objective is not to maximize profits but to provide 

accessibility to remote areas, where there is not enough demand for profitable airline operation. 

Nonetheless, this operation is vital for local communities, and in these networks, the objective is not 

only to minimize costs, but also to maximize the quality of the service provided to passengers. In this 

research area, there is comparatively less published literature, with an opportunity for important 

research. 
 

1.1. Context 
 

The Public Service Obligation (PSO) classification is a tool that can be used by the European states, in 

order to promote the economic development of regions which may require assistance, besides the 

normal self-regulation imposed by that market. This is achieved by subsidizing (with public money) the 

operation of airline routes in areas where such operation is not profitable. 
 

1.1.1. The need for PSO Networks 
 

In regions where, due to the low economic activity, scheduled airline service is not profitable but is 

necessary to allow for businesses to develop, and for residents to have accessibility to the important 
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economic centers adjacent to their region, a PSO network can be imposed by the government. This 

grants a subsidy to the operation of an airline, in order to make it profitable to operate, at reasonable 

ticket prices. As the website of the European commission states: “In order to maintain appropriate 

scheduled air services on routes which are vital for the economic development of the region they serve, 

Member States may impose public service obligations on these routes.” [8]. All the requirements and 

conditions to impose these networks are defined by the European commission’s regulation No 

1008/2008 [9]. 
 

Currently there are over 170 PSO networks in operation throughout Europe [10] mostly composed of 

domestic routes distributed by 8 EU countries, plus Iceland and Norway. The most obvious regions 

where this may be required, and which accounts for the majority of PSO networks in force is in islands. 

Due to its geographical characteristics, they are prone to requiring subsidies for scheduled airline 

service to be profitable. Nevertheless, there are also several PSO networks, which do not involve 

islands, but require such networks to connect remote areas with adjacent economic centers.  

 
As such, the imposition scheduled airline services was used by the legislators of the European 

Commission as a tool to promote the development of smaller, less populated areas. This scheme has 

already obtained verifiable positive results since the initial implementation, such as stronger connectivity 

to important centers for the residents and development of tourism in the remote region where a PSO 

service was implemented [11]. 

 

1.1.2. PSO Framework 
 

PSO networks are exceptions to the free competitive market which is operated throughout Europe since 

the policy of deregulation started to be implemented in 1988. These networks have guidelines defining 

their base principles and defining how a new PSO network should be imposed. 

 
The basic principles that support the European PSO system are [12]: 

1. Transparency: all calls for tenders, awards, modification and abolition of PSO routes must be 

announced in the official journal of the EU. Also, airfares and conditions can be quoted to users; 

2. Market failure: PSO routes are only imposed after market forces have failed to make scheduled 

air service profitable on the route; 

3. No obstacle to market functioning: a PSO should not limit the possibility for air carriers to provide 

a higher level of service (regarding frequency and capacity), than the minimum obligations 

required under the PSO; 
4. Necessity: Routes are considered vital for the economic and social development of the region 

served (routes to an airport serving a peripheral or development region or thin routes to any 

airport).  
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5. Proportionality and non-discrimination: PSOs must be imposed in a proportionate and non-

discriminatory manner (e.g. no restrictions based on passenger’s nationality or on the air 

carrier’s state of origin, no selective promotion of specific air carriers/airports);  

6. No alternative: Inadequacy of alternative transport modes connecting the route(s) under PSO; 

7. EU law: Full compliance with EU Regulation 1008/2008 (compliance with national law only is 

insufficient). 

8. Route-by-route basis: Necessity of PSO award must be assessed for each route separately (no 
network routes). A PSO cannot link two cities or two regions, routes must be defined from airport 

to airport.   

9. Geographic scope: A PSO route between an EU airport and a non-EU (except EEA members) 

country is not allowed. Intra-EU routes (not exclusively domestic) are however allowed. 

 

There are two types of PSOs:  

• Open PSO (22.1% of total routes as of July 2019): any air carrier can operate the PSO if it 
complies with their requirements; no exclusivity; no compensation granted.  

• Restricted PSO (77.9% of total routes as of July 2019): in case no air carrier is interested in 

operating the route on which the obligations have been imposed, the state concerned may 

restrict the access to the route to a single air carrier and compensate its operational losses 

resulting from the PSO. The selection of the operator must be made by public tender at 

Community level: only one air carrier can operate the PSO; if exclusivity is not enough to ensure 
the financial viability of service, then compensation is awarded. 

 

Although point 8 of the PSO principles defines a route-by-route basis, airlines may apply for a group of 

PSO routes, and be awarded exclusive operation to this group of routes, should this result in an increase 

in operational and administrative efficiency. This is what happens, for example, in the Azores 

Archipelago (in Portugal), where all the inter-island flights are operated by SATA Air Açores. 

 
Restricted PSOs have stricter rules, such as: 

• tender is open to EU or EEA carriers only; 

• Air carrier selection as soon as possible; 

• contract awarded for four years (five years for outermost regions);  

• bid selection criteria: adequacy of service offered and level of compensation; 

• compensation level must not exceed the amount required to cover the net costs incurred. 

 

The process of imposing a PSO is started by regional or national governments, and begins with an 
invitation to tender, which must be published in the Official Journal of the European Commission. The 

tender usually stipulates minimum service levels and maximum fares that air carriers need to satisfy for 

the duration of the contract. There are two tender rounds. The initial tender asks for submissions from 

air carriers who are able to operate services and meet the tender specifications without subsidy. If no 

carrier is willing to offer a subsidy-free operation, a second tender is issued which invites carriers to bid 
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based on receiving a subsidy. The awarding authority then decides considering the level of subvention 

demanded, levels of service offered and any other relevant considerations [13]. 

 

The definition of the PSO implies a minimum level of service to be defined, usually either by a minimum 

number of annual seats, or a minimum number of weekly frequencies. This minimum level of service is 

publicly available in the EC’s website [10]. 

 
These networks also exist in the United States of America, though applied slightly differently, in what is 

called the Essential Air Services (EAS) system [14], or in Australia with the Remote Air Service Subsidy 

(RASS) [15]. 

 

Although these three subsidy programs have the same overall purpose, they were implemented in 

different ways, with different guidelines. For example, while the PSO system allows for national or 

regional governments to setup PSO networks, in the American EAS, it is the responsibility of the 

Department of Transportation (DoT) to set them up, in a more centralized decision process. Moreover, 
while the PSO system awards exclusivity of the operation to the carrier which wins the tender, for the 

period of the contract, the EAS system allows for other carriers to enter that route whenever they want, 

even though one carrier may have won the tender already. Then the awarded carrier has to decide if it 

wants to continue operating without subsidies, or to withdraw from the route [13]. 

 

Even inside the PSO system within Europe, though under the same subsidy framework, each country 

has used it in different ways (as noted in [13] and [16]). Some countries use the PSO scheme in sparse 

regions of the country, to link remote regions between themselves (as is the example of Norway), while 
France, on the other hand, uses the PSO scheme to connect smaller regions with Paris, in an effort to 

promote economic activity in the remote regions, by connecting them to the business centers of the 

country [17]. 

 

Another example of different adoption of the PSO scheme is given by the United Kingdom, which 

focused its PSO network on setting up mostly “lifeline” types of services, allowing the population of 

remote regions to reach a city with more facilities (such as hospitals, for example) whenever necessary, 
not focusing on setting up routes for economic development. 

 
 

1.1.3. Integrated Flight Scheduling and Fleet Assignment 
Problem 

 

As stated above, the airline business operates in an economically and operationally challenging 

environment, with high costs and comparatively low profit margins. Although the airlines that operate 

within PSO networks are financially rewarded for their service, it remains critical for them to operate as 

efficiently as possible, in order to maximize economic results. On the other hand, the entity responsible 
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for subsidizing the PSO network (usually national or regional government entities) is focused on 

maximizing the quality of service provided to the users, but is also interested in minimizing the cost of 

subsidies that it must provide to the airline operating the route. Hence, solving the Integrated Flight 

Scheduling Fleet Assignment problem (IFSFA), is the suitable tool to optimize such networks. 

 

The IFSFA model builds on the FSFA (which is only focused in cost reduction to the airline) by adding 

the minimization of the costs associated with the passenger (from a financial and quality of service 
perspective), allowing for a more holistic view of the concept of an optimal network, in which the goal is 

not only reducing costs, but at the same time maximizing the quality of the service provided. This is very 

important because these networks are, by definition, sub-optimal, due to the fact that flights are being 

imposed on routes that do not have enough demand to justify their operation. Moreover, if a normal 

FSFA model was applied to these networks, the result would be a significant reduction in the quality of 

service provided, which might even violate the minimum frequencies defined by the entity which 

imposed the PSO, in an attempt to reduce the cost for the airline. 

 
This problem has already been explored previously and published in the literature ( [18] and [19]) with 

positive results, reducing both financial costs for the airline and time costs for the passengers. In the 

present dissertation, it will be applied to a different network with key differences, such as: the significant 

seasonality effect of demand (increasing in summer months due to tourism), or the significant 

competition from the ferry boat service (an established transport in the region).  

 

1.2. Research Objectives and Methodology 
 

The purpose of this research is to build on the model developed in [18] and adapt it in order to apply it 

to part of the PSO network of the Greek islands.  

 

Therefore, initially the model developed by the above-mentioned research will be implemented using 

the Fico Xpress software package, and tested through an illustrative example, which will be used to 

verify the results and demonstrate the capabilities of the model. After this process, the model will be 
applied to two case studies, both part of the Greek PSO network, using data provided by the Hellenic 

Civil Aviation Authority (HCAA) and by Aegean airlines. The model will be further developed to account 

for the specific characteristics of the PSO network of the Greek islands, such as the seasonality effects 

or the specific restrictions of smaller Greek airports. 

 

The current network will be analyzed and its respective costs will be calculated, which serve as the basis 

of comparison for the performance of the optimization model. Then, after solving the optimization 

problem, the results will be discussed and compared with the current network design. 
 

Finally, possible improvements to the network will be presented and discussed, and the research 

limitations and further research opportunities will be discussed. 
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1.3. Dissertation Outline 
 
This document is structured in seven chapters. 
 

Chapter 1 provides an introduction to the subject of the dissertation, stressing the importance of the 

overall aviation business, and detailing the specific aspects and objectives of the PSO network, 

comparing it to its similar frameworks outside the EU, followed by the explanation of the relevance of 
optimizing these networks. Finally, the research objectives and methodology are presented, followed by 

the general presentation of the structure of the dissertation. 

 

Chapter 2 builds on the previous chapter, with a goal of contextualization of the research topic, this time 

explaining the fundamental theoretical concepts behind integer programming optimization algorithms. 

This is followed by a State of the Art review, where the most prominent scientific papers in this research 

area will be reviewed and discussed, setting the theoretical foundation for the research that will follow. 
 

Chapter 3 presents the model to be used in the optimization, detailing the objective function and the 

constraints implemented. In this chapter, the mathematical formulation of the model is presented and 

described. An illustrative example is presented and serves the purpose of model verification.  

 

Chapter 4 is where the two case studies are presented. The networks are discussed, and the similarities 

and differences between them are explored. Moreover, the costs associated with each network are 

detailed, and the underlying assumptions are explained. 
 

Chapter 5 deals with the predictive model. A comprehensive description of the complete process is 

presented, while discussing the challenges and important aspects associated with this task. The data 

collection process is introduced, followed by the different approaches adopted until reaching the final 

model. Each attempt is presented with the value of the associated key performance indicators (KPI), in 

order to allow the reader to better understand the evolution until the final model is obtained. This 

quantifies the quality of the model, and demonstrates the improvements during the selection process. 
 

Chapter 6 presents the results obtained by applying the optimization model to the two case studies, 

detailing the costs of the optimized networks, and their key features. It also compares the optimal 

solution with the current networks defined and quantified in chapter 4, proposing an explanation for the 

improvements or possible deteriorations in the optimized solution, compared to the current situation. 

 

Finally, chapter 7 reviews the work done throughout the dissertation, comparing the obtained results 

with the initial objective. The main conclusions of the research are presented, as long as its limitations, 
identifying further research opportunities, as a continuation of this work. 
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2. Theoretical Background and State of the Art 
 

2.1. Theoretical Background 
 

The present research focuses on two main subjects, which are relevant in current scientific research: 
1. Demand Prediction; 

2. Integrated Flight Scheduling and Fleet Assignment. 

 

Both these subjects have consistently attracted attention from the scientific research community, due to 

their importance in a wide set of applications, with a key focus of interest from the transportation sector. 

In the following chapters, the theoretical foundation for both these subjects will be presented, in order 

to provide context to the research that follows. 

 

2.1.1. Demand Prediction 
 
The research area of demand prediction is most commonly based on multiple variable regression 

models, due to the fact that such a complex task requires several variables in order to make the results 
as accurate as possible. There are several possible formulations, starting with the most simple case of 

linear regression, where it is assumed that the dependent variable (which is the variable to be predicted, 

in this case the demand between origin and destination) varies linearly with several explanatory 

variables (e.g. the population of origin and destination, the gross domestic product (GDP) per capita, 

etc). This can be represented by the general expression: 

 

 y = β$ + β&x& + β(x(+. . . +β*x* + ϵ (1) 

 

Where y is the dependent variable, x* are the explanatory variables, β$ is the y-intercept and β* are the 

coefficients for each explanatory variable. 

 

The biggest advantage associated with this type of regression is its simple form, allowing for the 

regression to be performed with simpler calculations, but it is obviously more limited and is not suitable 

to more complex problems. 
 

For applications where a linear dependence on the explanatory variables is not suitable, there is a wide 

variety of more adequate models to choose from, each model with its strengths and weaknesses. These 

models are part of the so called Generalized Linear Models (GZLM) group, which opens the possibility 

of performing regressions in datasets where: 

• The dependent variable may not be continuous; 

• The effect of the explanatory variables may not be linear. 
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Generalized Linear Models should not be confused with General Linear Models (GLM), because the 

latter are applicable to normally distributed dependent variables, whilst GZLM allows for dependent 

variables with non-normal distributions.  This chapter will focus on the GZLM type of models which are 

relevant for the present research. 

 

A GZLM has 3 components: 

1. The systematic component: Usually a linear predictor such as 𝜂* 	= 	𝛽. 𝑋, where X is a vector of 

explanatory variables, 𝛽 are the calibration parameters and 𝜂* is the link function; 

2. A link Function: Describes how the mean, 𝐸[𝑌*] = 	𝜇* , depends on the linear predictor 𝑔(𝜇*) =

	𝑔(𝐸[𝑌*]) = 	𝜂* and, inversely, 𝜇* 	= 𝑔8&(𝜂*); 

3. A random component: Usually a probability distribution from the exponential family. 

 

There are several available GZLM (Normal, Poisson, Gama, Inverse Gaussian, etc.) but the types of 
model most suitable for this problem are the Poisson distribution or the Negative Binomial, since both 

are applied to similar cases, but the choice depends on the dataset, not on the type of problem. This is 

due to the fact that this type of regression is preferred when events are rare, and there are significant 

differences in the available dataset of dependent variables (which are used to tune the model’s 

coefficients in order to then predict the remaining dependent variables). 

 

This is applicable to the present research, because in PSO networks the demand is low (compared to 

normal, profitable airline routes) and there is significant discrepancies in the values of demand for 
different origin-destination (O/D) pairs. In fact, as it is explained later on, in this case study’s data there 

were demand values of around 10 and others around 5500, i.e. 550 times higher. 

 

While the Binomial distribution is used when the dependent variable corresponds to data counts of 

successes per number of trials (which would not make sense in this situation), the Poisson distribution 

is used when the dependent variable represents successes (in this case it represents the number of 

passengers for that O/D pair) per given number of time units (in this case for one month). 
 

One of the criteria to use a Poisson distribution is that there is no overdispersion of data in the dataset 

(i.e. the variance and the mean are equal to the lamda parameter of the distribution). In datasets where 

there is overdispersion, which usually happens when there are too many zeros in the dataset, 

corresponding to the demand in this type of routes, the alternative to the Poisson distribution is the 

Negative Binomial distribution. Hurdle models are also increasingly popular nowadays for applications 

of this kind, with a high quantity of zeros in the dataset, relative to the overall amount of available data 

[20]. 
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In case the chosen link function is logarithmic, the Poisson regression has the following general 

expression: 

 
𝐸[𝑌*] = 𝜆* = exp	(𝛽$ +<𝑥*>𝛽>

?

>@&

) (2) 

 

Where 𝐸[𝑌*] = 𝜆* represents the expected value for the variable being estimated, 𝛽$ and 𝛽> represent 

the coefficients of the regression and 𝑥*> represent the values of the explanatory variables. 

 

On the other hand, the Negative Binomial regression has the following general expression:  
 

 
𝐸[𝑌*] = 𝜆* = exp	(𝛽$ +<𝑥*>𝛽> + 𝜀*

?

>@&

) (3) 

 

The only difference between these two general expressions is the error term 𝜀*, which adds additional 

variance, and thus is included due to the overdispersion of data. Hence, the Poisson model can be 

regarded as a limited model of the negative binomial where the variance of 𝜀* set to 0. 

 

To perform the regression, the first step is checking if there is overdispersion of data, which can be 

achieved through the Lagrange multiplier test. A non-significant Lagrange test coefficient indicates that 
the binomial model’s ancillary (dispersion) parameter cannot be assumed to be different from 0. If this 

is the case, a Poisson model is preferred over a Negative Binomial model. 

 

With the regression model selected, the following step is of a trial and error nature, starting with 

attempting the regression with no explanatory variables. This is designated as the unrestricted model, 

and will be used as a basis for comparison. Then, through trial and error, possible explanatory variables 

are added to the regression successively, being kept if their effect is significant and the sign of the 
coefficient makes sense, or removed otherwise, until the best performing model is achieved. 

 

There are several indicators which can be used to compare models between themselves and choose 

the one which performs best, such as: 

• Akaike’s information criterion (AIC) and deviance, where smaller values indicate better 

performance of the regression (for both indicators); 

• Log-Likelihood (LL), where greater values indicate better performance; 

• Pseudo R2, obtained by comparing the LL of the model being tested with the LL of the 

unrestricted model, where values closer to 1 indicate better performance. 

 

For these types of regressions, there is still a tool that may be used for datasets with significant 
differences in the values of the dependent variable (this is the case of this dataset, where demand values 

range from 10 to 5500). This tool is called the offset variable, which is by itself an explanatory variable, 
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and the coefficient of which is fixed at 1 and is thus constant throughout the fitting process. Then, 

depending on the binary value for the specific entry (in this case it represents the demand for a specific 

route), it will either sum one (for high demand) or zero (for low demand) to the value in the exponential. 

 

The information above was only a brief review of the theoretical concepts, and was based on the book 

by McCullagh and Nelder [21], and the book by Silva and Turkman [22]. For further research, these 

references are recommended. 
 

2.1.2. Mixed Integer Linear Programming 
 

The problem that is explored in this dissertation is formulated using an Integer Linear Programming 

(ILP) model. This is part of the broader set of problems, defined as Mixed Integer Linear Programming 
(MILP) problems. Such problems are characterized by having necessarily at least one decision variable 

restricted to be an integer and also the objective function defined by a linear equation and the constraints 

by linear inequalities. ILP problems have all decision variables restricted to have integer values. 

 

There are several methods for solving MILP problems, but in this section only the branch and bound 

(BB) method will be presented, which is commonly used by commercial software. It is characterized by 

being an efficient approach, which instead of searching in the whole range of possible, leading to the 
consequence of unreasonable computational times, it only searches in the minimum number of solutions 

possible, in order to accelerate the process and increase computational efficiency. 

 

The methodology applied to solve MILP problems involves two key steps. The first step is called linear 

programming (LP) relaxation, and corresponds to eliminating the restriction that imposes the decision 

variable(s) to have integer value(s) (hence the term relaxation), and solve the associated problem. This 

sets the target for the MILP problem (which, being more restricted will, at best, reach the same solution, 

but never a better one) to be solved. By using such target as its basis, the BB method is applied, to find 
the optimal integer solution. 

 
2.1.2.1. LP solving algorithm 

 
As explained above, although this dissertation does not explicitly deal with LP problems, solving them 

is the first step in the methodology to solve a MILP, and for that reason this sub-chapter will briefly 
discuss this subject, not as an in-depth analysis, but just setting a theoretical background on the 

concepts involved with solving these problems. 

 

Probably the method for solving LP problems with most widespread acceptance is the simplex method, 

because of its robustness and readiness to implement in computer algorithms, as it is self-initiating. It 

also has the additional benefit of, besides calculating the optimal solution, indicating how the optimal 
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solution varies as a function of the problem data. This method has been extensively discussed in 

literature ( [23], [24]). 

 

The simplex method gives immediately the optimal solution when the objective function and constraints 

of the problem are written in the canonical form. Hence, the procedure to determine the optimal solution 

through the simplex method consists in manipulating the equations of the problem until it is written in 

the canonical form, characterized by: 

• All decision variables are constrained to be non-negative; 

• All constraints, except for the non-negativity of decision variables, are stated as equalities (when 

they are defined as inequalities they can be easily converted to equalities through the addition 

of “slack variables”); 

• The righthand side coefficients are all non-negative; 

• One decision variable is isolated in each constraint with a positive coefficient of one; 

• The variable isolated in a given constraint does not appear in any other constraint, and appears 

with a zero coefficient in the objective function. 
 

Once the equations have been manipulated to reach a form that complies with all these requirements, 

the optimal solution can immediately be determined. In general, given a canonical form for any linear 

program, a basic feasible solution is given by setting the variables isolated in each constraint, which are 

called the basic-variables, equal to the righthand side of the corresponding constraint and by setting the 

remaining variables, called non-basic variables, all to zero. From the previous statement the optimality 

criterion is defined:  

• In a maximization problem, if every non-basic variable has a non-positive coefficient in the 
objective function of a canonical form, then the basic feasible solution given by the canonical 

form maximizes the objective function in the feasible region. 

 

On the other hand, the problem may be unbounded over the feasible region, that is, not having a real 

number as its maximum, which tends to infinity. This can be defined by the unboundedness criterion: 

• In a maximization problem, if any non-basic variable has a positive coefficient in the objective 
function of a canonical form, and has negative or zero coefficients in all constraints, then the 

objective function is unbounded from above over the feasible region (that is, the maximum tends 

to infinity). 

 
The only situation that may appear with problems in the canonical form but is not contained in the two 

criteria above, is the situation where one non-basic variable has a positive coefficient in the objective 

function of a canonical form, but also has a positive coefficient in at least one of the constraints. In these 
situations, although the current set of equations complies with the requirements of the canonical form, 

these equations can be manipulated in order to reach a situation which will fit in the optimality criterion. 

This can be achieved by replacing the non-basic variable which has the positive coefficient in the 

objective function with the basic variable that has the lowest value of (BC
BD

), being 𝛽& the coefficient that is 
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multiplied by that basic variable in the constraint where it appears (there is only one basic variable per 

constraint, in the canonical form), and  𝛽( the coefficient that is multiplied by the non-basic variable in 

the same constraint. 
 

This replacement will make the non-basic variable become a basic-variable, and vice versa, and can be 

achieved through algebraic manipulation, in a process known as pivoting. Once the expression was 

pivoted, it will now comply with the requirements of the optimality criterion and the solution will be 

immediately obtained. The criterion for this third scenario can be defined as the improvement criterion: 

 

• In a maximization problem, if any non-basic variable has a positive coefficient in the objective 
function of a canonical form, and a positive coefficient in at least one constraint, then a new 

basic feasible solution may be obtained by pivoting. 

 

From [23], a graphical representation of the three criteria was presented, for problems with two non-

basic variables. These three scenarios (each applicable to one of the above criteria) were restricted to 

the same constraints, which define the feasible region:  

 
 𝑥& − 3𝑥G + 3𝑥H = 6 (4) 

 
 𝑥( − 8𝑥G + 4𝑥H = 4 (5) 

 
 𝑥> ≥ 0	(𝑗 = 1,2,3,4) (6) 

 
And each one will have a different objective function defined: 

 

1. Optimality criterion:  𝑀𝑎𝑥	𝑍 = −𝑥G − 𝑥H + 20 (7) 

2. Unboundedness criterion: 𝑀𝑎𝑥	𝑍 = 3𝑥G − 𝑥H + 20 (8) 

3. Improvement criterion: 𝑀𝑎𝑥	𝑍 = −3𝑥G + 𝑥H + 20 (9) 

 
It can be easily verified that each of the three problems defined above complies with the condition of the 

associated criterion, and Bradley et al. [23] provided graphical representations of the feasible region for 

the associated constraints [(4),(5),(6)] as presented in Figures 1 and 2. Here, the limits defined by the 

three constraints and the optimum solution for each problem, are represented. In Figure 1, the evolution 

of the objective function (increasing its value from 17 to 20) until reaching the optimum point defined by 

(0;0) on the non-basic variables x3 and x4 is also visible. 
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Figure 1: Example of graphical presentation of the first criterion [23] 

 

 
Figure 2: Example of graphical presentation of second and third criteria [23] 

Figure 2 represents once again the feasible region and the evolution of the objective function of the 

second and third criteria, the first one increasing towards infinity and the second one towards its 
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maximum at (0;1), which is explained by the fact that x4 was replaced by x2 as a non-basic variable, and 

became a basic variable (hence its value of one instead of zero). 

 
2.1.2.2. Branch and Bound method 

 
The first step in the branch and bound method is performing the linear programming relaxation. The 

solution will provide the upper bound for the solution in a maximization problem, or the lower bound for 

the solution in a minimization problem, i.e. the best possible result achievable. If, by chance, this solution 

obeyed the restriction of the decision variable(s) to have integer value(s), this would immediately give 

the optimal solution. Naturally, the probability of this happening is low and the model will usually have 

to continue to the next step. 

 

 
Figure 3: Demonstration of the Branch and Bound method [24] 

Assuming the solution of the LP relaxation does not obey the restrictions of the problem, this solution 

will be the first “node” of the BB tree (node 0 in Figure 3). From this node, branches will lead to new 

nodes (nodes 1 and 2 in Figure 3), increasing what is defined as depth. These two branches will result 

in 2 new nodes, with a depth increased by one unit. Hence, the first node has an associated depth of 1, 

the two nodes that result from this have a depth of 2, and so on. These new nodes, will have an additional 

constraint that imposes that the value of one of the decision variables must be either <=x (in one node), 

or >=(x+1) (in the other node), assuming this decision variable had a value between x and (x+1), and 
must be an integer in the final solution. In the example of Figure 3, the chosen decision variable (x2) had 

a value between 3 and 4, hence, node 2 had the additional constraint of (𝑥( ≤ 3) and node 1 had the 

additional constraint of (𝑥( ≥ 4). 
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Now, for each of the two nodes, which have an additional constraint to be satisfied (that imposes that 

the chosen decision variable is either “<=x” or “>=(x+1)”), the optimal solution will be calculated. The 

result is the lower bound in a maximization problem (or the upper bound in a minimization problem).  

 

One important fact is that the final optimal solution will always be between the lower and upper bounds. 

This is important because in the first step of solving the problem (the LP relaxation), the lower bound is 

calculated (for a minimization problem) and every feasible solution obtained by the solver can be the 
optimal solution to the problem (at this stage, the upper bound is infinite). This implies a very large range 

of possible solutions, but every time the solver finds a new feasible solution, its value will be compared 

with the current upper bound. If the value of this solution is not within the interval defined by the lower 

and upper bounds (whose size will have the tendency to reduce with the progress of the optimization), 

it can be immediately discarded. This reduces the range of possible solutions and makes it possible for 

the solution finding process to be more efficient and, consequently, quicker. 

 

After calculating the solution for both nodes, the bounds resulting from the two nodes will be compared 
and the one that has the lowest value (in a minimization problem), is the one which performed best and 

will be the focus of the solver. 

 

At that node, if the solution has an integer value in the decision variable which was involved in the new 

constraint, two new branches will be formed from this node (nodes 3 and 4 in Figure 3). These new 

branches will impose that a different decision variable (x1), which must have an integer value in the final 

solution, must either be “<=y” or “>=(y+1)”, assuming this decision variable had a value between y and 

(y+1). In Figure 3, x1 had a value between 3 and 4, hence node 3 had the additional constraint (𝑥& ≤ 3) 

and node 4 the additional constraint (𝑥& ≥ 4). This is an iterative procedure, that can easily be 

programmed by a computer, hence its applicability in commercial software. The model will increase the 

depth, until reaching the last possible node in that branch, where the branch will be fathomed (which 

can happen for 3 reasons, to be discussed later). This iterative process would increase depth (imposing 

more constraints) successively until either obtaining an unfeasible solution or a solution which obeys all 

restrictions imposed by the main problem to be solved. 
 

In summary, each iteration involves the following operations: 

1. Branching - deciding on which node to branch from among the “active” nodes in the tree; 

2. Bounding - operation that is performed at each created node to decide which nodes will be 

fathomed (pruning the branches). It amounts to solving the corresponding subproblem at 

each node; 

3. Fathoming - in essence pruning the tree. Based on some test and the bound values at the 

“active” nodes, the algorithm decides on nodes that can be discarded. This step also 
includes a termination criterion. 

 



 16 

As mentioned above, fathoming is the process through which it is possible to stop the iterative process 

in that branch, and leads to a more efficient approach, allowing for less nodes to be examined overall. 

The fathoming process is guided by 3 criteria that decide if that node should be discarded or chosen as 

the best current solution. These 3 criteria will be explained below, being applicable to a minimization 

problem: 

1. Fathoming by infeasibility: if the node being examined resulted in an unfeasible solution, any 

possible branch that could result from this would necessarily be unfeasible (by adding 
constraints, the range of solutions will never expand), hence the node is fathomed and 

abandoned; 

2. Fathoming by bound: If the node being examined has a value greater than the current best 

value (which is in another node). In this situation, neither its solution or the possible solutions 

obtained by branching from this node would obtain better results than the current best value, 

hence it would simply be a waste of computational capability; 

3. Fathoming by feasibility: If two nodes with feasible solutions branch from the same node, the 

one which has the highest value will be discarded, and the one which has the lowest value 
(which is the goal in minimization) will be chosen as the current best solution. There is no need 

to branch from this node as it is already feasible (hence obeys all the restrictions). 

 
One important KPI allowed by the BB method is the optimality gap. This results from the already 

discussed fact that the optimal solution has to be confined within the interval defined by the lower and 

upper bound. Hence, it is possible during the optimization process to estimate how close the current 

best solution is from optimality. This KPI can be used to benchmark the quality of a still unfinished 

optimization process, by giving the difference in percentage between the current best solution that has 
been found and the lower bound (for a minimization problem, upper for maximization). This can be used 

as the criterion to stop the optimization at a reasonable value, if it is not possible or acceptable to wait 

until the optimum value is achieved. This KPI is designated as optimality gap and it can be calculated 

through: 

 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦	𝑔𝑎𝑝	(%) =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑏𝑒𝑠𝑡	𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑙𝑜𝑤𝑒𝑟	𝑏𝑜𝑢𝑛𝑑

𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑏𝑒𝑠𝑡	𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 × 100	% (10) 

 

 

2.2. State of the Art 
 

As mentioned previously in the theoretical background chapter, this dissertation focuses on two key 

research subjects: demand prediction and fleet optimization. Both areas are currently at the focus of 

transportation research and, consequently, have been extensively discussed in published literature. 

Hence, this chapter is dedicated to reviewing the state of the art in these two subjects, setting a context 
for the research that follows. 
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2.2.1. Demand Prediction 
 

This research subject has attracted considerable attention from the academic community, due to, at the 

same time, its importance and the difficulty in obtaining reliable estimates [25]. In this chapter, this 

literature will be analyzed and discussed.  

 

Probably the most established method of demand prediction is the multiple variable regression analysis. 

Washington et al.’s book [26] provides a comprehensive analysis of the concepts related with this 

exercise, detailing the different models available and the scenarios where each model is applicable. 
 

In 1997, Calderon [27] published a paper proposing a demand model for scheduled airline services, 

based on data from the entire European network in 1989. This research was innovative at the time, 

because the author identified a lack of literature dedicated to demand prediction in Europe, proceeding 

to adapt models developed in the United States of America (US), to be applicable to the European 

market. The author came up with gathered several significant conclusions that nowadays are widely 

accepted in specialized literature, such as the importance of population, GDP and frequency of flights 

as explanatory variables. The paper also performed an elasticity analysis of the resulting explanatory 
variables, proceeding then to propose explanations for the results obtained, characterizing the different 

segments of the European market. 

 

Grosche et al. [28] proposed two possible gravity models, underlining the known fact that there is 

considerable unreliability with these models. This leads airlines to not relying solely on one model but 

gathering the information from different models to predict the demand for their possible future routes. It 

is applicable to new markets, with the advantage of not relying on traditionally used inputs that are not 
yet available to airlines before starting to operate the route (e.g. service-related factors or passenger 

income). Instead, the model uses mainly geo-economic variables as independent factors. 

 

Wadud [29] published a paper analyzing demand prediction in areas where data to define explanatory 

variables is not available. This is applicable to, for example, a region where a study is carried out, 

assessing the importance of building an airport to the region. Hence, the model developed uses limited 

aggregate information about a country or region in order to generate a forecast for passenger demand 

of a new airport. This modeling approach was applied to forecast the demand for a new airport in a 
divisional capital in Bangladesh, for which no regional data on gross domestic product or population was 

available. This research highlights the challenges and uncertainties associated with the demand 

prediction task and performs it with limited data available. The model also takes into account the 

competition by road travel, which can be important in relatively small countries. 

 

Focused on more commonly analyzed markets, Barnhart et al. [30] analyzed how to improve reliability 

in the air transportation segment in the US and European Union (EU) through managing capacity and 

demand in already established networks. The result proposes changes in several areas, such as tactical 
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adjustments and real-time interventions, from medium to short term. This stresses the importance of 

technological progress in these improvements, in order to have a more “flexible” network which will be 

able to withstand the challenges that will be imposed in the future. This will be crucial with the continuous 

expansion of already saturated areas, such as airports (on the ground and in the surrounding airspace). 

 

Demirsoy published a master thesis in 2012 [31] focusing on studying the significant expansion of the 

Turkish airline transport market, proposing and testing six hypothesis to explain such growth. The 
research concludes that, unlike what most published literature finds for other markets, in the Turkish 

market the population does not have an effect on demand in the long term (although it has in the short 

term). Another interesting feature is the analysis of the effect of deregulation (in 2003) in the demand 

for the Turkish market, which was significant. It also concluded that the high-speed railway network is 

not affecting demand for the Turkish air transport market in the short term, although it may affect in the 

long term, when its network is more mature. This is interesting for the present research, because it is 

also expected that the competition of ferry boat services will affect demand in its case studies. The 

differences in the results of Demirsoy’s case study from most published literature demonstrate that in 
such a complex subject, it is not possible to use solutions which were applicable to other markets 

immediately, but a thorough analysis must be performed to that specific market. 

 

Adeniran & Adeniran [32] focuses on determining the correlation between international air travel demand 

in Nigeria and several econometric indicators. It is interesting to verify that the results were not what 

was expected by the authors, due to problems related with correlation and multicollinearity of the 

independent variables. This stresses the fact that, although an attempt to add as much independent 

variables as possible might seem a good method to increase the quality of the forecast, this is usually 
not the case in these regressions. Hence, attention must be paid when performing the regression, 

following the steps already described in the theoretical background, in order to maximize the predictive 

capacity of the model. Another interesting feature of this research is demonstrating the significant impact 

that variation in the value of local currencies compared to the US dollar may have. This is especially 

important in currencies with a smaller base of users, relative to, for example, the Euro which although 

still affected, is more stable. 

 
Carmona-Benítez et al. [33] proposed an econometric  dynamic model to estimate passenger demand, 

applying it to the Mexican market and proposing an approach to solve the airline airport hub location 

problem. This paper highlights the economic importance of the airline business to cities, by using 

economic indicators as explanatory variables for the model. It concludes that the increase of economic 

activity promotes air travel demand, and that economic indicators can be used correctly as explanatory 

variables to predict demand, at the state, city or airport level. This model is validated by two different 

tests, proving its suitability to predict demand for air travel. 

 
Kluge et al. [34] perform an analysis applied specifically to the European market, hence its interest to 

this research. Their results can be analyzed in order to predict particular features of the European 
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market, and later to compare the particularities of the Greek market, from the results of the this research. 

The paper focuses on determining the relation between passenger air travel demand and factors such 

as the GDP, the urbanization level, the geographical location and the degree of education, proving that 

the first, third and fourth indicators were statistically significant. The GDP of a country is commonly seen 

as a statistically significant variable in this area of research, but the other two indicators also deliver 

interesting results, and may have an effect on the Greek case study. 

 
An interesting niche of this research subject is the demand prediction for markets with very strong 

touristic activity, due to the differences that these carry with them (such as seasonality, less importance 

of GDP when compared to more traditional business markets, very high ratios of tourist to inhabitant, 

etc). This type of markets have already been analyzed since at least 2002, when Devoto et al. [35] 

published their research focused on determining how demand could be predicted in these touristic 

markets, specifically using tourism variables (e.g. resident population, number of tourist beds, per capita 

beds and tourist arrivals). This was achieved through the application to a case study in Sardinia, Italy, 

analyzing three different airports, with the resident population always being statistically significant as a 
predictor of demand. Besides the city population adjacent to the three airports, there was a different 

variable related to tourism which was considered significant for each airport, demonstrating that the 

effect of tourism cannot be ignored and indicating that there is no consensus on which variable is more 

suitable. This happens even within three airports contained within a relatively short area, in a similar 

market. More recently, Erjongmanee & Kongsamutr [36] published a research focusing on demand 

forecasting in Thailand, taking into account the effect of tourism, with significant results as predicted. 

This paper also studies and compares the suitability of machine learning algorithms for demand 

forecasting, which is definitely a promising method worth more research in the future, due to the current 
capabilities and significant evolution that these algorithms have been characterized by recently. 

 

From the literature discussed above, Table 1 was compiled, with the most commonly used explanatory 

variables in demand forecasting, as a summary. In the last line of the table, there is the key data from 

the present work. It is presented in the same shape of the literature reviewed, in order to allow an easier 

comparison. The data that was included in the final demand model is presented, organized in columns 

with different categories of variables. An in depth analysis and a description of the development of the 
predictive model will be presented in chapter 5. 
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2.2.2. Fleet Optimization 
 

Due to the importance of transportation in general, and particularly airline transport to the economic 

development of regions, there is significant literature published addressing the optimization of the usage 

of airline’s resources, namely airplanes and crews. 
 

Lohatepanont & Barnhart [37] and Sherali et al. [38] are two widely recognized publications that assess 

the problem of flight scheduling and fleet assignment with the sole purpose of maximizing profit for 

airlines. These papers obtained interesting improvements in their case studies, with several publications 

building on this objective, which should be expected, due to the financial interest associated with this 

type of optimization. One of these, published more recently, is Jamili [39] , which has the same objective, 

although exploring different methodologies to achieve it. 

Table 1: Summary of relevant documents in demand prediction literature 

  Population 
variable 

Economic 
variable 

Price of 
transport 

Frequency of 
transport Duration of trip Geographic 

variable 
Importance 
of tourism 

Calderon, J.D.J, 
[27] 

Sum of 
inhabitants 

of O&D 

Weighted 
average 

income per 
capita of 

O&D 

Cheapest 
fare on 

the route 

number of 
return weekly 

flights 
N/A 

Distance 
between 
airports 

Ratio of hotel 
guests to 

inhabitants 

Erjongmanee &  
Kongsamutr [36] 

Population of 
O&D 

GDP/capita 
of O&D 

Average 
cost of 
ticket 

N/A Travel time 
between O&D 

Distance 
between 
airports 

Number of 
tourists of 

O&D 

Carmona-Benítez 
et al. [33] 

Economically 
active 

population 

Consumer 
price index N/A 

Total number 
of flights in 
each airport 

N/A N/A 
Hotel 

occupancy 
index 

Devoto et al. [35] 
Resident 

population in 
the market 

N/A N/A N/A N/A N/A 

Number of 
tourist beds, 

tourist 
arrivals 

Demirsoy [31] Population in 
the market 

Average 
Income, oil 

prices 
N/A N/A N/A N/A  

N/A 

Adeniran & 
Adeniran [32] N/A 

Change in: 
currency 
value and 

GDP 

N/A N/A N/A N/A  
N/A 

Kluge & Paul [34] 

Population in 
the market 
and degree 

of 
urbanization 

GDP/capita N/A 
Number of 
air trips per 

capita 
N/A 

Variable 
defining 

whether the 
country is in 

an island 

N/A 

Wadud [29] 

Population of 
O&D, 

separate 
variables 

GDP/capita 
of O&D, 
separate 
variables 

Ratio of 
cost by 
air to 

cost by 
road 

N/A 
Travel time ration 
between air and 

road travel 
N/A 

 
 

N/A 

Present Work 

Logarithm of 
Product of 

O/D 
Population 

N/A N/A Frequency of 
Flights 

Travel time 
between O&D 

Distance 
between 

O&D 
N/A 
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Also, Liu et al. [40]  analyzes this problem through a different approach: by minimizing the impacts of 

the inevitable delays that are associated with airline operation, and imply significant expenses for the 

airlines. This is achieved through a combination of a traditional genetic algorithm with a multi-objective 

optimization method, addressing multiple objectives (such as turn-around times, flight connections, flight 

swaps) simultaneously, and then exploring the optimal solution. This is interesting because it would not 

be realistic to plan operations assuming everything will always go according to schedule, hence it is 
important for academic literature to also focus on schedule disruption, and how to minimize the 

associated effects. 

 

The main reference for this dissertation came from Pita et al. ( [18] and [19]), where a model was built 

that, instead of focusing on maximizing economic results for airlines, adds the objective of the 

maximization of the quality of the service provided to passengers. The models are applied to case 

studies in the PSO networks established in the Azores and in Norway, respectively. The second paper, 

builds on the first one, taking also into account the expenses and revenues of airport owners, associated 
with these routes. Both case studies obtained very interesting results, reducing costs in all the areas 

considered, and with impressive computational times required to reach the optimum solution. This is the 

reason why these papers are the main reference for the present research, with the purpose of adapting 

this model to a Greek PSO network.  

 

Continuing the previously mentioned research, Antunes et al. [41] focused on analyzing in depth the 

network of the Azores operated by SATA, working closely with the airline. This allowed real data to be 

used as much as possible, reducing the amount of assumptions. With the objective of analyzing the 
maximum reduction of operating costs that SATA could have achieved by optimizing the network and 

changing its route structure. This was done while satisfying the same passenger demand as in 2012, 

with the current fleet, taking into account the implications of possible changes on the level of service 

offered. The paper proposed new shapes for the PSO imposed network, and quantified the 

improvements that could be obtained, with real data from a year in the past. The research concluded 

that the variable operating costs could be reduced significantly, which would save the government of 

the Azores a significant amount of funds in subsidies. 
 

Iliopoulou et al. [42] was analyzed due to the similarities it has with the present research. This paper 

proposes a sea-plane network in the Greek islands, which would compete against the locally well-

established ferry boat network. The objective is to minimize the travel cost, the size of the fleet and the 

unsatisfied demand between successive island ports, by proposing a new network, instead of optimizing 

an existent route, hence it is not straightforward to assess the improvements achieved. Also with the 

goal of proposing a completely new network is the case study developed by Dozic & Kalic [43] which, 

in three stages, performed a comprehensive analysis into all the steps required for designing the new 
route. This included defining the appropriate fleet mix, fleet size and aircraft selection, with positive 

results. 



 22 

 

Ma et al. (2017) [44] addresses arguably one of the most discussed problems currently, which is the 

need for the reduction of carbon dioxide emissions. It develops an optimization model whose objective 

is to maximize the result of profit minus emissions, hence, the research aims at simultaneously 

maximizing profit and minimizing emissions associated with operating the flights. This model is applied 

to case studies from Asian airlines, with interesting results, namely that the optimal point obtained 

mathematically proved to be unreachable in real life. Besides this, the point achievable in reality that 
was closest to optimality had significant improvements over the current situation, and it was concluded 

that small reductions in profits lead to significant reductions in emissions. 

 

Once again, the results above were all compiled into Table 2 , for a better comparison of the results. 

 

 

 

 
In the last line of this table, the features of the present work are presented, in order to allow for a better 

comparison with the remaining literature, which was reviewed above. The model developed in this work 

will be analyzed and discussed in Chapter 3.  

Table 2: Summary of relevant documents in fleet optimization literature 

  Objective Case study 
Time to find 

optimum 
solution 

Order of 
magnitude of 
improvement 

Solution method 

Lohatepanont & 
Barnhart [37] 

Maximize profit to 
the airline 

 

Undisclosed major 
US airline 12 hours 5% Branch and Bound 

Liu et al. [40] 
Minimize delays, 
flight swaps and 

connections 

Reopening of 
Sungshan and 

Taichung airports 

Not more 
detailed than 

“minutes” 
Not disclosed Multi-objective Genetic 

Algorithm 

Sherali et al. [38] Maximize net 
revenue United Airlines 24 hours 10% Benders Decomposition 

Pita et al. [18] 

Minimize operating 
costs for the airline 

and travel time 
  

PSO network in the 
Azores 88 minutes 10% Branch and Bound 

Pita et al. [19] 

Minimize operating 
costs for both the 
airline and airport, 

travel time 
  

PSO network in 
Norway 20 hours 30% Branch and Bound 

Iliopoulou et al. 
[42] 

Minimize travel 
cost, number of 

route, passengers 
not served  

Prospective 
Seaplane network 

in Greece 
45 minutes N/A Genetic algorithm coupled 

with a hybrid process 

Dozic & Kalic [43] 
Minimize fleet 

required, operating 
costs 

Hypothetical airline 
based in Belgrade 

Not 
disclosed N/A 

Fuzzy logic, heuristic, analytic 
approaches and multi-criteria 

decision making 

Jamili [39] Maximize profit to 
the airline Not disclosed 1 hour N/A 

Hybrid with simulated 
Annealing and particle swarm 

optimization 

Ma et al. [44] 
Alternatively 

maximize profit or 
minimize emissions 

Jetstar Asia and 
undisclosed 

Chinese airline 

Not 
disclosed 8% Compromise method to the 

Pareto Solution 

Present work 
Minimize operating 
costs for the airline 

and travel time 

Two segments of 
Greek PSO 

network 
24 hours 10% Branch and Bound 
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3. Optimization model 
3.1. Integer Linear Programming Formulation   

 

For the optimization model, a significant amount of input data must be specified. Then, as many 

constraints as possible must be defined, as well as the objective function. With these steps complete, 
the software program is able to solve the integer linear programming optimization problem. 

 

3.1.1. Inputs 
 
First, the following constants were defined: 

1. NA, which defines the number of airports in the network; 

2. NR, which defines the number of aircraft types available; 

3. NWT, which defines the number of possible time periods waiting on the ground, by a 

passenger, for a connecting flight; 

4. NT, which defines the number of time periods for the calculation; 

5. NF, representing the number of possible flight routes, one between each O/D pair in each 
way. 

 

Then, the associated sets were defined: 

1. A, ranging from 1 to NA, has all the airports; 

2. R, ranging from 1 to NR, has all the aircraft types; 

3. WT, ranging from 1 to NWT, has all the possible waiting times; 

4. T, ranging from 1 to NT, has all the time periods; 

5. FL, ranging from 1 to NF, has all the possible flight routes. 
 

With the sets defined, the inputs to the model were created, which are a function of these sets: 

1. cB: cost of time for being on board an aircraft for the passengers (euros/h); 

2. cW: cost of time for waiting on the ground for the passengers (euros/h); 

3. z(r): number of aircraft of each type; 

4. s(r): seat capacity of each aircraft type; 

5. xmin(f): minimum number of flights in flight route f, as imposed by the PSO; 

6. smin(f): minimum number of seats available in flight route f, as imposed by the PSO; 
7. tF(f): travel time to complete flight route f; 

8. tA(a1,a2): travel time between airports a1 and a2; 

9. cF(r): direct operating cost to perform a flight with aircraft type r per time period; 

10. cS(a,r): cost of having an aircraft of type r on the ground, in airport a, per time period; 

11. q(f): demand for flight route f; 

12. l(f): maximum load factor that the airline will sell, for flight route f; 

13. dF(f): specifies which is the airport of departure for flight route f; 
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14. aF(f): specifies which is the airport of arrival for flight route f; 

One important remark is that inputs 7 and 8 represent the same travel time, but number 7 is in the form 

of a vector, and number 8 in the form of a matrix. This was necessary because the decision variables 

which will be presented in section 3.1.3,  uD and u2 only have as inputs the route f, whereas u1 is 

referenced to one route f and one airport a. 

 

All these inputs will be read from a file named "inputs.dat", created while processing the data collected 
for the case study. 

 

3.1.2. Pre-processed variables 
 

In order to reduce the computation time, pre-processed variables were used in order to avoid having 
the software searching for the optimal solution in unreasonable solutions (e.g. searching in a connection 

itinerary arriving at the initial departure airport). The chosen pre-processed variables will be assigned 

the value of 1 for possible entries, and the value of 0 to impossible entries. 

 

The chosen pre-processed variables were: 

1. FF(f,t): equal to 1 if the flight route f, leaving at time period t arrives at destination until the 

last time period; 
 

2. d1(f,a,t,wt): equal to 1 if flight itinerary which includes flight route f, and then continues to 

final destination a, represents a possible and reasonable itinerary, first departing at time t 

and waiting for time wt for a connection; 

 

3. d2(f1,f2,t,wt1,wt2): equal to 1 if itinerary which includes 3 flights, being the first and last, 

respectively, f1 and f2, and the second flight the route that connects the arrival of f1 with the 

departure of f2 is plausible. This method reduces the amount of memory required to run the 
optimization, allowing for a more complex problem to be solved. Only the itineraries that are 

possible and make sense will have the value of 1 (e.g. an itinerary that in the end returns to 

the initial airport would never make sense for a passenger, hence will have the value of 0). 

 

3.1.3. Decision Variables 
 

The variables whose values will be optimized when running the model, the decision variables, are: 

1. y(a,t,r): number of aircrafts of type r that are on the ground in airport a, from time t to (t+1); 

2. x(f,t,r): number of aircrafts of type r that fly route f, departing at time t and arriving at time [t+tF(f)], 

this variable is defined as binary, in order to prevent the software considering the possibility of 

having several aircrafts flying the same route departing at the same time; 

3. uD(f,t): number of passengers assigned to route f, taking off at t and landing at [t+tF(f)]; 
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4. u1(f,a,t,wt): number of passengers assigned to the one stop itinerary which contains route f, and 

then continues to final destination a. Initial departure time is t, waiting time on the ground for 

connection is wt. Hence, the time of final arrival is given by [t+tF(f)+wt+tA(aF(f),a)]. 

5. u2(f1,f2,t,wt1,wt2): number of passengers assigned to the two stop itinerary which contains f1 as 

the first flight and f2 as the third flight, and has a flight joining the two airports as the second 

flight. Initial departure time is t and the waiting times on the ground are respectively wt1 and wt2. 

Hence, the time of final arrival is given by: [t+tF(f1)+wt1+tA(aF(f1),dF(f2))+wt2+tF(f2)]; 
6. gc(a,t,r): equal to 1 if aircraft r has been on the ground for more than 2 hours, starting at time t; 

 

The graphical presentation of some of the first five variables is included in Figure 4, where the colors of 

uD, u1, u2 are represented in boxes, demonstrating the meaning of each variable. It should be noted that 

this is not the most straightforward formulation, but with 56 routes, 8 airports and 33 time periods, initial 

simpler formulations would quickly have too many indexes for average computers to run out of memory 

(e.g. while this formulation for u2 has 3 725 568 possible entries, the initial formulation had approximately 

5.29x1012 entries, this means a reduction in the 106 order of magnitude). 
 

 
Figure 4: Possible itineraries for a passenger 

 

These decision variables will be used in the applied constraints, the objective function, and the 
interpretation of their values will give the optimal solution to the problem. 

 

3.1.4. Objective function 
 
The objective function is what will be either maximized or minimized in the mathematical formulation. 

Hence, it is critical that the objective function is properly defined, and correctly reflects the physical 

reality of the problem. The objective function was defined as the sum of the following seven components 

(O& to Oj): 
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This first component (11) reflects the direct costs for the airline, resulting from the operation of the flights. 

It sums for all the flights performed, the product of the cost of each time period of flight in that aircraft, 

with the number of time periods the flight took and with the number of flights. 

 

 O& = 	 < < < 𝑐k(𝑟). 𝑡k(𝑓). 𝑥(𝑓, 𝑡, 𝑟)
m	∈	op	∈	qr	∈	ks

 (11) 

 

The second component (12) accounts for the costs to the airline, of having an aircraft of type r, parked 
on the ground in airport a, at time t (when it exceeds 2 hours). This is achieved by summing, for all 

airports, aircraft types and time periods, the product of the respective parking cost with the number of 

aircrafts of that type parked in that airport, for more than 2 hours. 

 

 
𝑂( = < < < 𝑐t(𝑎, 𝑟). 𝑔u(𝑎, 𝑡, 𝑟)

m	∈	op	∈	qv	∈	w

 (12) 

 

The third, fourth and fifth components [(13), (14), (15)] account for the social cost to the passengers, 

quantified by the cost of time for them, for direct, one stop and two stops itineraries, respectively. Hence, 

it is obtained by summing the product of all the time on board an aircraft with the number of passengers 

and the cost of time on board for passengers. 

 𝑂G = < < 𝑐x. 𝑡k(𝑓). 𝑢y(𝑓, 𝑡)
p	∈	qr	∈	ks

 (13) 

 

 𝑂H = < < < < 𝑐x. [𝑡k(𝑓) + 𝑡w(𝑎k(𝑓), 𝑎)]. 𝑢&(𝑓, 𝑎, 𝑡, 𝑤𝑡)
zp	∈	{qp	∈	qv	∈	wr	∈	ks

 (14) 

 

 
𝑂| = < < < < < 𝑐𝐵. ~𝑡𝐹(𝑓&) + 𝑡𝐴�𝑎k(𝑓&), 𝑑k(𝑓()�

zpD	∈	{qzpC	∈	{qp	∈	qrD	∈	ksrC	∈	ks

+ 𝑡𝐹(𝑓()�. 𝑢((𝑓&, 𝑓(, 𝑡, 𝑤𝑡&, 𝑤𝑡() 

(15) 

 

The sixth and seventh components [(16), (17)] account for the social cost to the passengers, of having 

to wait between two flights, on the ground, in an airport, respectively for one and two stop itineraries. 

Hence, it is obtained by summing the product of all the time on the ground in an airport, with the number 

of passengers and the cost of time on the ground for passengers. 
 

 𝑂� = < < < < 𝑐{. (𝑤𝑡). 𝑢&(𝑓, 𝑎, 𝑡, 𝑤𝑡)
zp	∈	{qp	∈	qv	∈	wr	∈	ks

 (16) 
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 𝑂j = < < < < < 𝑐{. (𝑤𝑡& + 𝑤𝑡(). 𝑢((𝑓&, 𝑓(, 𝑡, 𝑤𝑡&, 𝑤𝑡()
zpD	∈	{qzpC	∈	{qp	∈	qrD	∈	ksrC	∈	ks

 (17) 

 
 

The objective function O is given by the sum of the above seven components, and the optimization 

problem will be defined by the minimization of O (min O). 

 
 

3.1.5. Constraints 
 

While implementing the model, several constraints were defined. Some constraints have the objective 

of defining the problem, others only have objective of reducing the required computation time, not being 

necessary to define the problem. The following constraints were defined: 

 

The first constraint (18) ensures that the sum of aircrafts on the ground and in the air, at any time period, 
is equal to the available number of aircrafts of that type. 

 

 < 𝑦(𝑎, 𝑡, 𝑟) +	
v	∈	w

< < 𝑥(𝑓, 𝑡&, 𝑟) = 𝑧(𝑟),			∀	𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅		
pC∈	q|

pC�p�(pC�p�(r))

	
r	∈	ks

 (18) 

 

The second constraint (19) imposes continuity in each node. It imposes that the sum of the number of 

aircrafts arriving into an airport and aircrafts already parked there, is equal to the sum of aircrafts 

departing from that airport and aircrafts that will stay parked there. 

 

𝑦(𝑎, 𝑡 − 1, 𝑟) +	 < 𝑥(𝑓, 𝑡 − 𝑡k(𝑓), 𝑟) = 𝑦(𝑎, 𝑡, 𝑟) +
r	∈	ks|

v�(r)@v⋀ p�p�(r)

< 𝑥(𝑓, 𝑡, 𝑟)
r	∈	ks|
��(r)@v	

		 , ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 ∖ {1}, 𝑟 ∈ 𝑅 (19) 

 

Constraint (20) imposes that there are never more passengers assigned to a flight than the maximum 

allowed number of passengers to that flight. This is achieved by specifying that for all aircraft types, the 

sum of all passengers in direct or connecting flights is smaller or equal to the number of available seats. 

The number of available seats is calculated by summing for all aircraft types, the product of the number 

of aircrafts operating that route, with their capacity and with the maximum load factor. The use of the 

pre-processed variables d1, d2 and FF accelerates the computation of the solution, narrowing the search 

of the model. 
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<𝑙(𝑓). 𝑠(𝑟). 𝑥(𝑓, 𝑡, 𝑟) ≥ 𝑢y(𝑓, 𝑡)
m∈o

< 𝑢&(𝑓, 𝑎, 𝑡, 𝑤𝑡)
v∈w,zp∈{q

+ < 𝑢&(𝑓&, 𝑎, 𝑡&, 𝑤𝑡)
rC∈ks,			v∈w,pC∈q,			zp	∈	{q|

v�(rC)@��(r)∧v�(r)@v∧(pC�p�(rC)�zp)@p

+ < 𝑢((𝑓, 𝑓&, 𝑡, 𝑤𝑡&, 𝑤𝑡() < 𝑢((𝑓&, 𝑓(, 𝑡&, 𝑤𝑡&, 𝑤𝑡()
{rC;rD}∈ks,			p&∈q,			{zpC;zpD}∈{q|

v�(rC)@��(r)∧��(rD)@v�(r)∧(pC�p�(rC)�zpC)@p
rC∈ks,{zpC;zpD}∈{q

+ < 𝑢((𝑓&, 𝑓, 𝑡&, 𝑤𝑡&, 𝑤𝑡()
rC∈ks,			pC∈q,			{zpC;zpD}∈{q|

(pC�p�(rC)�zpC�p�(v�(rC),��(r))�zpD)@p

,					∀	𝑓 ∈ 𝐹𝐿, 𝑡 ∈ 𝑇					 

 

 

(20) 
 
 
 
 

 
Constraint (21) ensures that the demand is satisfied, i.e. that all the passengers that must travel from 

one airport to another, will either be assigned to a direct, a one-stop or a two-stop itinerary. 

 

<𝑢y(𝑓, 𝑡)
p∈q

+ < 𝑢&(𝑓&, 𝑎, 𝑡, 𝑤𝑡)
rC∈ks,p∈q,zp∈{q,v∈w|
��(r)@rC		∧		v�(r)@v

+ < 𝑢((𝑓&, 𝑓(, 𝑡, 𝑤𝑡&, 𝑤𝑡()
{rC;rD}∈ks,p∈q,{zpC;zpD}∈{q|
��(r)@��(rC)	∧		v�(r)@v�(rD)

= 𝑞(𝑓), 

∀𝑓 ∈ 𝐹𝐿 

(21) 

 

Constraints (22) and (23) impose that, respectively, the minimum number of flights and seats between 

any two airports is fulfilled. 

 

 < 𝑥(𝑓, 𝑡, 𝑟)
p∈q,			m∈o

≥ 𝑥�*�(𝑓)				, ∀𝑓 ∈ 𝐹𝐿 (22) 

 

 < 𝑠(𝑟). 𝑥(𝑓, 𝑡, 𝑟)
p∈q,			m∈o

≥ 𝑠�*�(𝑓)				, ∀𝑓 ∈ 𝐹𝐿 (23) 

 

Constraints (24), (25), (26), (27) and (28) impose that, respectively the number of aircrafts on the ground, 

in the air,  and passengers carried in direct, one-stop and two-stops itineraries are all positive integers. 
 

 𝑦(𝑎, 𝑡, 𝑟) ∈ ℤ			, ∀	𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅 (24) 

 

 𝑥(𝑓, 𝑡, 𝑟) ∈ ℤ			, ∀	𝑓 ∈ 𝐹𝐿, 𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅 (25) 

 

 𝑢y(𝑓, 𝑡) ∈ ℤ			, ∀	𝑓 ∈ 𝐹𝐿, 𝑡 ∈ 𝑇 (26) 

 

 𝑢&(𝑓, 𝑎, 𝑡, 𝑤𝑡) ∈ ℤ			, ∀	𝑓 ∈ 𝐹𝐿, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇,𝑤𝑡 ∈ 𝑊𝑇 (27) 
 

 𝑢((𝑓&, 𝑓(, 𝑡, 𝑤𝑡&, 𝑤𝑡() ∈ ℤ			, ∀	{𝑓&; 𝑓(} ∈ 𝐹𝐿, 𝑡 ∈ 𝑇, {𝑤𝑡&;𝑤𝑡(} ∈ 𝑊𝑇 (28) 

 

 

 

+	

+	
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Constraints (29) and (30) impose that the fleet starts and ends the day at the hub. This constraint was 

imposed due to information received from airlines operating these routes. 

 < 𝑥(𝑓, 1, 𝑟)
r∈ks|��(r)@�

+ 𝑦(8,1, 𝑟) = 𝑧(𝑟)			, ∀	𝑟 ∈ 𝑅 (29) 

 

 

 𝑦(8,33, 𝑟) = 𝑧(𝑟)			, ∀	𝑟 ∈ 𝑅 (30) 
 

Constraints (31) and (32) allow the model to only consider aircraft ground fees if an aircraft stays on the 

ground for more than 2 hours. 

 𝑔�(𝑎, 𝑡, 𝑟) ∈ {0,1}			, ∀	𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅 (31) 

 
𝑔�(𝑎, 𝑡, 𝑟) ≥ 𝑦(𝑎, 𝑡, 𝑟) + 𝑦(𝑎, 𝑡 + 1, 𝑟) + 𝑦(𝑎, 𝑡 + 2, 𝑟) + 𝑦(𝑎, 𝑡 + 3, 𝑟) − 3.5		, 

	∀	a ∈ 𝐴, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 ∖ {31,32,33}																															 
(32) 

 

Constraint (33) imposes that there are not two different flights operating on the same route, with an 

interval smaller than 3 hours. This had to be imposed because one solution fulfilled all the frequencies 

imposed by the PSO with very small intervals, which is unreal. 
 

<[𝑥(𝑓, 𝑡, 𝑟) + 𝑥(𝑓, 𝑡 + 1, 𝑟) + 𝑥(𝑓, 𝑡 + 2, 𝑟) + 𝑥(𝑓, 𝑡 + 3, 𝑟) + 𝑥(𝑓, 𝑡 + 4, 𝑟) + 𝑥(𝑓, 𝑡 + 5, 𝑟)]
m∈o

≤ 1,			 

	∀	𝑓 ∈ 𝐹𝐿, 𝑡 ∈ 𝑇 ∖ {29,30,31,32,33}														 

(33) 

 

 

Besides the above-mentioned constraints, which are necessary for the correct specification of the 

problem, other “virtual” constraints were added. The goal was to reduce the computation time to 

reasonable values and these constraints were added based on the concept of “helping” the model in 

narrowing down the range of possible solutions only to the reasonable ones. This removes from the 

scope of analysis of the software program unreasonable solutions, such as placing passengers in 
itineraries which end the day in the same airport as the departure. 

 

This specification of additional “virtual constraints” must be carried out carefully, under the risk of 

removing the actual optimal solution from the range of possible solutions to be analyzed by the model.  

 

Some examples of these constraints which were attempted, some with and some without success are: 

1. Whenever one aircraft is departing the “hub” airport, all the fleet is departing the “hub” airport at 

that time. This potentializes the hub effect, and increases the possibility of connections in the 
hub, requiring less flights overall; 

2. Imposing that in any moment in time there is a maximum of one aircraft operating in each route; 

3. Specifying a maximum of one flight for the whole time of the analysis, for all the routes that have 

no minimum amount of flights assigned by the PSO network, or have low demand; 
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4. Impose that connecting itineraries which imply a total flown distance longer than 150% of the 

direct distance between origin and final destination do not have passengers placed there. 

 
As detailed above, there is one objective function(O), to be minimized. This function is comprised of the 

sum of 7 components, and there are 16 equations imposing the necessary constraints for the model to 

reach a solution, which follows all the requirements for the problem.  

 
In order to verify the correct solution by the model, an illustrative example was developed, which 

demonstrates that the model is correctly solving the given problem. This example will be presented next. 
 

3.2. Illustrative example 
 

3.2.1. Problem Specification 
 

The objective of the example is to optimize the routes for a network comprised of 4 airports (1, 2, 3 and 

4), during 10 time periods (each time period represents one hour, going from 10 am to 7pm). A specified 

demand of passengers (to be detailed below) must be fulfilled, and there are two types of aircraft 

available. 

1. type A which can carry 60 passengers on board, has an operating (in flight) cost of 2000 €/h, a 

ground cost of 100 €/h and there is 1 aircraft of this type available; 

2. type B, which carries 120 passengers on board, has an operating cost of 3000 €/h, a ground 
cost of 100 €/h and there is 1 aircraft of this type available. 

 

It was imposed that no passenger will have to wait for more than 3 hours on the ground for a connection, 

and the demand to be fulfilled is presented in Table 3. 

 
Table 3: demand to be fulfilled in the illustrative example 

Demand 

 
Arrival 

Airport 1 Airport 2 Airport 3 Airport 4 

Departure 

Airport 1  5 10 20 

Airport 2 30  20 25 

Airport 3 120 51  70 

Airport 4 15 10 20  

 

 

Since this model is applied to public service obligation routes, which usually impose a minimum amount 
of flights and/or seats between certain airports, this is also implemented in the model. For this example, 

the following minimum number of flights and seats were imposed: 
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• 1 flight per day (round trip) between airports: 1-2, 1-4, 2-3; 

• 60 seats from 1 to 2; 

• 50 seats from 2 to 1; 

• 120 seats from 1 to 4 and from 4 to 1; 

• 100 seats from 2 to 3 and from 3 to 2; 

 

The travel time between different airports is obviously variable and this is considered. For this example, 

the following travel times were defined: 
 

• 1 hour between: 1-2, 1-4, 2-4, 3-4 (for each direction); 

• 2 hours between: 1-3, 2-3 (for each direction); 

 
Another feature of the model is to impose maximum allowed load factors (which is defined by the number 

of occupied seats, divided by the number of installed seats) for each route, which is something that 

airlines or even the PSO may impose. For this example, the following maximum load factors were 

imposed, as presented in Table 4. 

 
Table 4: maximum load factor for the illustrative example 

Maximum load factor (%) 

 
Arrival 

Airport 1 Airport 2 Airport 3 Airport 4 

Departure 

Airport 1  90 95 98 

Airport 2 100  98 99 

Airport 3 100 98  95 

Airport 4 100 99 100  

 

3.2.2. Results 
 

The model solved the problem, giving the optimal solution in less than 3 seconds. This demonstrates 

how quickly the model converges to the optimal solution, even though the problem is of small scale and 

simple. As a comparison, the initial (more straightforward) formulation, which was already mentioned 

when defining the decision variables, took 6 minutes to reach the optimal solution for the same problem. 

Hence, a significant reduction in computational time was achieved between the previous and the final 
formulations. The solution is presented graphically below, in Figure 5, where each row represents an 

airport, and each column one hour of the day, from 10:00 to 19:00. In Figure 6, the detailed solution is 

presented. 
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Figure 5: Graphical results from the illustrative example 

 
Figure 6: Detailed results from the illustrative example 

It can be seen from the results presented in Figure 6 that the demand specified in Table 3 was correctly 

fulfilled. These results are obtained from a text file created by the optimization algorithm, detailing the 
solution. 

 
As it was demonstrated, the constraints related with the demand were all followed, including the 

maximum time on the ground waiting for a connection flight (only once equal to 3 hours, and never 

greater). 

 



 33 

Now, regarding the constraints related to the flights: 

• It was required to have round trips between 1-2, 1-4, 2-3 which is verified; 

• It was required to have 60 seats from 1 to 2, and 50 seats from 2 to 1. This round-trip flight is 

performed by a type 1 aircraft, so this constraint is verified; 

• 120 seats from 1 to 4 and from 4 to 1.  This round-trip flight is performed by a type 2 aircraft, so 
this constraint is verified; 

• 100 seats from 2 to 3 and from 3 to 2. This round-trip flight is performed by a type 2 aircraft, so 

this constraint is verified. 

The last verification that must be performed, is that the maximum load factors are never exceeded. In 

Figure 7, for each flight the number of passengers on board is written, followed by, in brackets, the 

maximum number of passengers allowed. As an example, a flight departing from airport 4 at 10:00 and 

arriving to airport 2 at 11:00 carries 25 passengers with a maximum of 60. This number was obtained 
by multiplying the maximum load factor for that route, with the capacity of the type of aircraft which 

operated the flight. 

 
Figure 7: Demonstration of the capability to not exceed the maximum load factor 

 

It can be verified that there were 29 passengers placed in flights with 2 ground connections because 

there was no availability left to allow more direct itineraries. 
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4. Two Greek Case studies 
 

This dissertation applies the optimization model defined in the previous chapter to two case studies 

located in Greece, within the Greek PSO network. Hence, for each case study, one “based” in Rhodes 
airport and another “based” in Thessaloniki airport, the airports which had PSO routes imposed 

connecting them to the “base” airports were joined into two networks. The objective was to improve 

connectivity within the network, not resorting to the biggest hub in the country, Athens airport, for 

connecting flights. This objective was set due to the geographical proximity of the islands within each 

network, where a connection in Athens implies a long deviation. 

 

As it was explained in the first chapter, the European PSO scheme has transparency as one of its core 
values. Hence, the information regarding each PSO network is made publicly available in the European 

Commission’s website [10]. With data extracted from that source, tables 5 and 6 below were compiled, 

with key information from the PSO networks which are the base for the case studies. An explanation of 

the information in the table will be given below. 
 

Table 5: Key data regarding the PSO scheme [10] 

 

Airport 

 

Airport 

No. of weekly 

return 

frequencies 

PSO 

passengers in 

2017 

Load Factor  

(pax/minimum 

seats) 

Annual 

economic 

compensation 

(€) 

Type of 

aircraft 

Rhodes 
Karpathos-

Kasos 
3/4/6 18 741 141.98% 795 000 ATR-42 

Rhodes Kastelorizo 2/2/3 7 023 79.81% 919 199 Dash 8-100 

 

Rhodes 

Kos-

Kalymnos-

Leros-

Astypalaia 

3/4/6 3 415 56.45% 1 089 000 ATR-42 

Thessaloniki Kerkyra 2 15 547 166.10% 99 000 ATR-42 

Thessaloniki Limnos-Ikaria 3/4/6 14 646 110.95% 
528 000 

 
ATR-72 

Thessaloniki Samos 3/4/6 23 581 89.32% N/A 
Dash8-

100/400 

Thessaloniki Skyros 2 2 496 40.00% 250 000 ATR-42 

Thessaloniki Chios 3/4/6 31 331 118.68% N/A 
Dash8-

100/400 

Thessaloniki Kalamata 3/4/6 12 810 58.23% N/A 
Dash8-

100/400 
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In order to facilitate the comprehension of the data included in Table 5, the values in the first column will 

be explained. The first two columns detail the airports involved, and should be read as a sequence, i.e. 

it is imposed that a flight must depart from Rhodes, with final destination Kasos, but with an intermediate 

stop in Karpathos. The return flight (i.e. Kasos to Rhodes, with an intermediate stop in Kasos) is also 

imposed automatically. 

 

The third column specified the minimum weekly frequencies imposed by the PSO. In the lines where 
there are 3 values (e.g. 3/4/6), each value represents the imposed frequency for one season of the year, 

as the Greek aviation sector divides the year in three seasons, according to the expected demand. The 

highest values correspond to the summer months, the lowest values to the winter months, with the 

remaining value corresponding to the mid-season. 

 

The fourth, fifth, sixth and seventh columns are self-explanatory. One remark about the fifth column 

explains why there are percentages of load factor greater than 100%. This is because the value is 

calculated as the number of actual passengers, divided by the minimum amount of seats imposed by 
the PSO, while typically load factor represents occupied seats divided by total available seats. 

 

Table 6: Key data regarding the Greek PSO scheme (continuation) [10] 

 

Airport 

 

Airport 

Annual seats 

required by 

the PSO 

Open or 

Restricted 

PSO (O/R) 

Number of bids 

in the tender 

process 

Airlines 

Operating 

(names) 

PSO in force 

from 

Rhodes 
Karpathos-

Kasos 
13200 R 2 Sky Express 1-Oct-2016 

Rhodes Kastelorizo 8800 R 1 Olympic Air 1-Oct-2016 

 

Rhodes 

Kos-

Kalymnos-

Leros-

Astypalaia 

 

6050 

 

R 2 Sky Express 1-Jun-2018 

Thessaloniki Kerkyra 9360 R 3 Sky Express 12-Apr-2018 

Thessaloniki Limnos-Ikaria 13200 R 1 Astra Airlines 1-Oct-2016 

Thessaloniki Samos 26400 O N/A 

Astra Airlines, 

Olympic Air, 

Sky Express 

1-Oct-2016 

Thessaloniki Skyros 6240 R 1 Sky Express 1-Apr-2017 

Thessaloniki Chios 26400 O N/A 

Astra Airlines, 

Olympic Air, 

Sky Express 

1-Oct-2016 

Thessaloniki Kalamata 22000 R 1 Olympic Air 1-Oct-2016 
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In Table 6, the first two columns represent the same information as in Table 5, in order to understand to 

which network the information refers to. The third column specifies the minimum number of seats that 

must be made available annually to the public by the airline, as imposed by the PSO. The fourth column 

specifies if the route is part of an open or restricted PSO, which defines whether other airlines can offer 

competitive air services to the subsidized route. The fifth column details how many bids were submitted 

in the tender process, when imposing that specific route. In the sixth column, the name of the airline(s) 

which were granted the operation in that route is shown, and it should be noted that routes specified as 
restricted (R in the fourth column), only have one airline operating, as was explained in section 1.1.2. 

The last column specifies the date when that PSO network was imposed. 

 

With the PSO impositions described, the networks will be presented. Each network is comprised of 8 

airports, including the “hub” airport, with 56 possible routes. These networks were chosen because, 

although they have the same number of airports and are located relatively close to each other, they are 

different in terms of the number of aircrafts employed, passengers transported, and frequencies 

imposed by the PSO, which will allow for a more comprehensive analysis of the Greek market. 
 

The goal of these case studies is to reduce the total costs of the networks to the lowest possible values. 

The total cost to be considered is the sum of the following four components: 

1. Aircraft direct operating costs – this represents the direct cost for an airline to operate a flight, 

and includes the fuel, the crew, the airport and airspace fees, the maintenance, etc. Usually in 

the airline industry this cost is calculated per block hour (block time in aviation refers to the time 

the engines are operating in a flight), and this value will be used. Based on Eurocontrol’s 

Standard inputs for cost benefit analysis document [45] the cost per block hour was estimated 
to be: 

a. 1502 €/h for the Bombardier dash8-q100; 

b. 1502 €/h for the ATR42; 

c. 2376 €/h for the Bombardier dash8-q400. 

2. Aircraft ground costs – this represents the cost for the airline to have the aircraft on the ground 

and is considered to be the parking fees in the airport. These were estimated to be 10% of the 

aircraft direct operating costs [18]. It is common in the airline industry for airlines not to pay 
parking fees if the aircraft is on the ground for at least less than 2 hours [25]; 

3. Passenger on board time cost – this represents the cost of the time spent on board, for a 

passenger. It was estimated to be 10€/h for the passengers in these networks, of which 

business travelers account for a small percentage of the overall demand [45]; 

4. Passenger ground connection time cost – this represents the cost of the time spent in an airport 

waiting for a connection, for a passenger. It was estimated to be 10€/h for this network, 

assuming it is mostly comprised of tourist passengers. This is justified by the fact that for 

tourists, there is no significant difference between time spent on board or on the ground. 
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Having detailed the values, each network will be discussed separately. Section 4.1 specifies Rhodes 

network and section 4.2 specifies Thessaloniki network.  

 

4.1. Rhodes Network 
 

The first case study can be considered the most simple and Rhodes airport is considered its “hub”. It 

can be considered the most simple due to the smaller number of frequencies imposed, the smaller 

number of aircraft operating in the network and the overall smaller costs involved, when compared to 
the second case study. 

 
Figure 8: Graphical representation of the current Rhodes network. 

In this network there are 7 routes imposed by the PSO, as represented in Figure 8. All of these routes 

are operated in both directions (hence 14 routes in total, if outbound and inbound legs are considered 

as different routes). The fleet that operates this network was considered to be composed by one 

Bombardier Dash 8 Q100 aircraft and two ATR 42 aircrafts. This results from an extensive analysis of 

the aircrafts operating in these routes, through flight tracking websites, leading to the conclusion that 

this was the most accurate representation of the real situation. The costs associated with this network 
are detailed below. 

 
4.1.1. Aircraft Operating Costs 

 

Regarding the aircraft operating costs, using real data provided by the HCAA from last summer, the 
number of movements and aircraft type associated with each O/D pair was noted, as represented in 

Table 7. 
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Table 7: Number of flights per O/D pair in the Rhodes network 

Rhodes  flights 

 Arrival 
Astypalaia Kalymnos Karpathos Kasos Kastelorizo Kos Leros Rhodes 

Departure 

Astypalaia  2 0 0 0 1 1 1 

Kalymnos 1  0 0 0 1 1 2 

Karpathos 0 0  4 0 0 0 4 

Kasos 0 0 4  0 0 0 3 

Kastelorizo 0 0 0 0  0 0 3 

Kos 1 1 0 0 0  0 1 

Leros 2 1 0 0 0 0  2 

Rhodes 0 2 3 3 3 1 2  

 

Using this data multiplied by the duration of each flight, the total aircraft operating cost for this network 

was estimated to be 53 771€, for a total of 50 flights, resulting in an average cost of 1 075€ per flight. 

4.1.2. Aircraft Ground Costs 
 
Regarding the aircraft ground costs, according to the information collected from the Greek airlines, 

airplanes are scheduled to stay for less than 2 hours on the ground. Since parking fees are only charged 

when an aircraft stays on the ground for more than 2 hours, it was considered that for the existing 

network, aircraft ground costs are zero. 

 

4.1.3. Passenger Time Costs 
 

Regarding the Passenger time costs, the total travel time for each O/D pair was compiled, and is 

presented in Table 8. These values were compiled through an extensive search from online travel 

websites, and for each O/D pair, the travel times of at least one full week were verified, and the shortest 

value was considered. This was done in order to allow for a fair comparison, due to the fact that there 

are days of the week which allow for better connections than others. Some routes have direct flights, 
whereas others have long connections, explaining the broad range of values for the travel time. 

 

With this information, for each O/D pair the passenger time costs were calculated using the following 

expression:  

𝑃𝑇𝐶 = 𝐶𝑡 × 𝑇𝑇 × 𝑃𝑁 (34) 

  

Where Ct is the cost of time for the passengers, TT the travel time and PN the number of passengers 

in that route. The total passenger time costs were then calculated by summing all the passenger time 

costs for each O/D pair associated with that network. The total passenger time costs were estimated to 

be 6 470€ for a total of 375 passengers, resulting in an average travel time of 1 hour and 44 minutes 

per passenger. 



 39 

Table 8: Travel time per O/D pair for the Rhodes network 

Rhodes Travel time (hours) 

 Arrival 
Astypalaia Kalymnos Karpathos Kasos Kastelorizo Kos Leros Rhodes 

Departure 

Astypalaia  1.2 4.0 4.8 20.0 2.0 0.5 3.0 

Kalymnos 1.2  2.5 3.3 12.3 0.5 0.5 1.5 

Karpathos 5.5 7.0  0.3 9.8 7.8 5.3 0.6 

Kasos 14.0 13.5 0.3  14.3 8.3 17.5 1.3 

Kastelorizo 9.0 4.8 7.5 9.0  4.0 5.8 0.6 

Kos 1.9 0.5 1.6 2.3 8.5  1.2 0.5 

Leros 0.5 0.5 3.3 4.0 14.6 1.2  2.2 

Rhodes 2.8 1.3 0.6 1.3 0.6 0.5 2.0  

 
4.1.4. Total Cost 

 

Summing all these components, the total cost for the Rhodes network was estimated to be 60 241€, for 

the period in analysis. 

 

4.2. Thessaloniki Network 
 
This network is also comprised of 7 routes, flown in both directions (hence 14 routes if considering 

outbound and inbound as 2 different routes), as presented in Figure 9. All of them are imposed by the 

PSO, fulfilled by 2 dash 8 Q100, 2 dash 8 Q400 and 1 ATR 42 aircrafts. The composition of the fleet in 

this network was obtained through the same process as in the previous network. The larger fleet size 

and geographical distances illustrate the larger dimension of this network, which contributes to the larger 

costs that will be verified next. 
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Figure 9: Graphical representation of the Thessaloniki network 

The costs for this network were once again calculated and are presented below. 

 

4.2.1. Aircraft operating costs 
 

The same method was used to calculate the aircraft operating cost of this network, and the number of 
movements per O/D pair are presented in Table 9. 
 

Table 9: Number of flights per O/D pair in the Thessaloniki network 

Thessaloniki Flights 

 Arrival 
Chios Ikaria Kalamata Kerkyra Limnos Samos Skyros Thessaloniki 

Departure 

Chios  0 0 0 2 0 0 5 

Ikaria 0  0 0 3 0 0 3 

Kalamata 0 0  1 0 0 0 4 

Kerkyra 0 0 1  0 0 0 3 

Limnos 2 3 0 0  0 0 3 

Samos 1 0 0 0 1  0 5 

Skyros 0 0 0 0 0 0  1 

Thessaloniki 5 3 3 3 3 5 2  

 

Using this data multiplied by the duration of each flight, the total aircraft operating costs were estimated 

to be 134 424€, for a total of 62 flights, resulting in an average cost of 2 168€ per flight (which is more 

than twice the average operating cost for the Rhodes network). 
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4.2.2. Aircraft ground costs 
 

For the same reasons as explained for the Rhodes network, the aircraft ground costs for the 

Thessaloniki network were assumed to be 0€. 
 

4.2.3. Passenger time Costs 
 

Regarding the Passenger time costs, using the same procedure as for the previous network, the total 

travel time for each O/D pair was compiled, and is presented in Table 10. 

 
Table 10: Travel time per O/D pair for the Thessaloniki network 

Thessaloniki Travel time (hours) 

 Arrival 
Chios Ikaria Kalamata Kerkyra Limnos Samos Skyros Thessaloniki 

Departure 

Chios  4.0 3.2 4.0 3.8 0..5 4 1.5 

Ikaria 4.5  16.5 3.3 0.8 3.0 13.3 1.5 

Kalamata 4.5 15.2  8.0 10.8 14.0 12.0 1.5 

Kerkyra 3.0 3.8 2.8  4.5 2.5 4.8 1.0 

Limnos 1.8 0.8 6.0 2.5  2.8 5.3 1.0 

Samos 0.6 3.2 60 3.6 2.8  4.2 1.3 

Skyros 3.5 4.3 4.8 2.8 3.0 5.0  0.8 

Thessaloniki 1.6 1.2 1.5 1.3 1.5 1.0 3.0  

 

Using equation (34), the total passenger time costs for the Thessaloniki network were estimated to be 

27 637€ for a total of 1357 passengers (three times more passengers than in the Rhodes network), 

resulting in an average travel time of 2 hours and 1 minute per passenger. 
 

4.2.4. Total Cost 
 

Summing all the components above, the total cost for the Thessaloniki network was estimated to be 162 
061€, for the period in analysis. 
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5. Predictive Model 
This chapter will deal with the development of the predictive model, which will estimate values of demand 

for the routes in the optimization model that do not have available real world data. 

 

5.1. Context 
 
As mentioned previously, airlines operate under very tight operational constraints, with significant 

pressure over their margins. This way, it is not uncommon to see airlines that were profitable in one 

year, to have significant losses in the following year, only due to relatively small changes in the economic 

and operational environment. Hence, airlines must focus on optimizing their operational conditions, 

which will allow them to maximize their chances of success. In order to achieve this, one of the key 

decisions is the network that the airline will operate, and how to use the fleet in this network. 

 
Therefore, the most important input to the optimization of an airline’s network is predicting the demand 

for the associated routes. This prediction has to be performed for the current network and for O/D pairs 

which are candidates to future routes (which, as a process, has even more uncertainty associated). Due 

to its relevance, this task has attracted significant attention from academic research, as mentioned in 

chapter 2. This prediction task is very complex, and always involves significant uncertainty in the 

estimated demand (as analyzed in the book by Neufville and Odoni [25], which dedicated a whole 

chapter to this subject), a detail which must never be disregarded by the user of the estimation. There 
are several guidelines generally accepted which detail how to perform a demand prediction and quantify 

the associated error. The optimization model will need to have as an input the demand for the network 

in analysis, and because there is no demand data available covering all the network, it must be predicted 

following the above mentioned guidelines. The network is comprised of 16 airports, hence, there are 

240 (16x15) O/D pairs, whose demand must be predicted. 

 

5.2. Definition of explanatory variables 
 

This demand will be estimated through multiple variable linear regression analysis, since this is a method 
commonly accepted in the literature concerning this area. With the objective of using published literature 

as a guideline, a literature review was carried out through published papers which analyzed the problem 

of demand prediction, in order to choose the most suitable explanatory variables to the case study. This 

literature review was already presented and discussed in section 2.2, but a summary of the most 

common explanatory variables found in these publications was defined, and is presented below: 

1. GDP (either summing or multiplying both origin and destination, either total or per capita); 

2. Population (either summing or multiplying both origin and destination); 
3. Importance of tourism (either by number of tourist arrivals, hotel beds or per capita beds); 

4. Cost of ticket (either absolute, or compared to its competition (e.g. rail, car, boat…)); 

5. Travel time; 
6. Distance between airports. 
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Since this case study has some particularities, other variables that could describe these particularities 

were considered, and later their significance was assessed through the multiple variable linear 

regression analysis, such as: 

1. Existence of significant cruise ship terminals in the islands, since it is expected that the 

embarking and disembarking of cruise ship passengers will increase air travel demand 

in the island. Hence, it is believed that if an island has a cruise ship terminal with 

significant activity, demand for airline tickets will increase; 
2. Competition of the ferry boats, since this is a well-established and very popular mean 

of transportation within the Greek archipelago. The higher the quality of the service 

provided by the ferry boat (either through fast travel times, or low ticket prices), the 

lower the demand for airplane seats is expected to be. 

3. Effect of population ageing. The hypothesis that areas with a higher share of retired 

population would have proportionally less travelling will be tested. This hypothesis 

comes from the fact that business activity promotes travelling. Hence, and since the 

average age of the population of some islands is above the Greek average, this was 
considered, through the percentage of residents above 60 years old, for each island. It 

is believed that the higher this percentage, the lower the demand for airline flights will 

be; 

 

These additional variables and those mentioned previously taken from the reviewed papers will be 

analyzed, in order to determine which ones have the highest correlation with demand, for the network 

of the case study. 

 

5.3. Collection of data 
 

The first step in the multiple variable linear regression analysis was the data collection, namely the 

values of the above explanatory variables, for each of the 240 O/D pairs (for the predictive model, both 

networks were joined into one). This data was collected through several sources, and refers to the month 

of August 2018, namely: 

1. For the sociodemographic variables: Population, GDP per capita, and population ageing, values 

were taken from official statistics sources such as Eurostat or the Hellenic Statistic Authority; 
2. For the variables describing the transport market: existence of a ferry between origin and 

destination, cost of airplane ticket, cost of ferry ticket, existence of direct flight, airplane travel 

time (including connections if applicable), direct distance between airports and minimum 

number of weekly flights, as established by the PSO, values were taken from the official website 

of the European commission (for the PSO specific values), and from online travel websites (for 

the ticket prices, travel times and the existence of direct flights or ferries); 

3. For the economic variables, related to tourism: sum of number of hotel beds in origin and 

destination and existence of cruise ship terminals, information was retrieved from the Hellenic 
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Statistic Authority, and from official tourism websites, developed by the national and local 

governments; 

4. As many demand values as possible were obtained from the HCAA (passengers carried in 

scheduled direct flights between origin and destination) and from the connecting tickets emitted 

by Aegean airlines, which were then the base for predicting the missing values. In total, values 

for 54 direct routes, and 12 connecting routes were obtained. The creation of two demand 

models was considered, one with the data from direct routes only and another with the data 
from connecting itineraries, but it was decided that the number of routes for which the data was 

available was not enough for two separate models. Hence, the decision was to create a single 

model sustained by the 66 routes with available demand values. 
 

Table 11: Example of collected sociodemographic and economic data 

  SOCIODEMOGRAPHIC Economy - tourism 

Origin Destination 
Population 

product  
(x10-7) 

GDP/capita 
product 
(x10-7) 

% over 
60 (O) 

% over 
60 (D) 

Product of 
hotel 

beds/capita 

Cruise 
availability 

(O) 

Cruise 
availability 

(D) 

Astypalaia Chios 7.027 24.723 0.225 0.270 0.019 0 1 

Astypalaia Ikaria 1.124 25.692 0.225 0.345 0.044 0 0 

Astypalaia Kalamata 57.680 28.060 0.225 0.309 0.005 0 1 

Astypalaia Kalymnos 2.158 32.964 0.225 0.232 0.038 0 0 

Astypalaia Karpathos 0.831 32.964 0.225 0.277 0.346 0 0 

Astypalaia Kasos 0.145 32.964 0.225 0.225 0.021 0 0 

Astypalaia Kastelorizo 0.066 32.964 0.225 0.225 0.074 0 0 

Astypalaia Kerkyra 13.616 31.024 0.225 0.281 0.158 0 1 

Astypalaia Kos 4.454 32.964 0.225 0.168 0.541 0 0 

Astypalaia Leros 1.056 32.964 0.225 0.225 0.053 0 0 
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Table 12: Example of collected transport market data 

  TRANSPORT 

Origin Destination Sea connection 
Cost 

Ticket 
Air (€) 

Cost 
Ticket 

Boat (€) 

Travel time 
(hours) 

distance 
(NM) 

Frequency Of 
Flights 

Astypalaia Chios 0 191 0 10.0 106 0 

Astypalaia Ikaria 0 168 0 16.5 66 0 

Astypalaia Kalamata 0 0 0 0.0 211 0 

Astypalaia Kalymnos 1 70 15 1.0 36 13 

Astypalaia Karpathos 0 180 0 16.0 79 0 

Astypalaia Kasos 0 0 0 0.0 74 0 

Astypalaia Kastelorizo 1 0 35 0.0 157 0 

Astypalaia Kerkyra 0 193 0 9.0 356 0 

Astypalaia Kos 1 98 17 9.0 37 13 

Astypalaia Leros 0 76 0 0.5 42 13 

 

Once this information was collected (an extract is presented in tables 11 and 12), the regression was 

carried out using IBM’s SPSS software package, through a Poisson regression. This type of regression 

was chosen due to its greater suitability to these types of data sets, with very different values of the 

dependent variable (demand), which depend on explanatory variables by a power different than one. 

 

5.4. Choice of model 
 

The regression went through several specification tests, in order to reach the most reasonable model 

possible, such as: 

1. Checking for overdispersion of data, through the Lagrange Test, in order to validate either the 

Poisson regression or the negative binomial regression as the best option; 

2. Verification of the statistical significance of the parameters, through the Wald test and p-values; 

3. Analysis of the predictive capacity, through the Omnibus test; 
4. Comparison between models with different specifications, in order to choose the most suitable 

one. 
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The initial approach to the regression was to use all the proposed explanatory variables, to analyze the 

result. Hence, it was assumed that the following explanatory variables (18 in total) would have a (positive 

or negative) impact on demand and this assumption was analyzed: 

• Product of the Populations of the origin and destination markets, expected to have a positive 

impact on the demand, as its value increases; 

• Population of the origin and destination markets, each one considered a separate variable, 
expected to have a positive impact on the demand, as its value increases; 

• Product of the GDP/capita of the origin and destination markets, expected to have a positive 

impact on the demand, as its value increases; 

• GDP/capita of the origin and destination markets, each one considered a separate variable, 
expected to have a positive impact on the demand, as its value increases; 

• Fraction of the population older than 60 years, for origin and destination, each one considered 

a separate variable, expected to have a negative impact on demand, as its value increases; 

• Dummy variable equal to 1 if the O/D pair is connected by ferry boat service, expected to have 
a negative impact on the demand, as its value increases; 

• Cost of a ferry boat ticket for the O/D pair; if there is no ticket offered, will have the value of zero, 

expected to have a positive impact on the demand, as its value increases; 

• Dummy variable equal to 1 if the O/D pair is served by a direct flight, with at least one weekly 

frequency, expected to have a positive impact on the demand, as its value increases; 

• Cost of an airplane ticket, from the origin to the destination, even if this implies having 

connections. If there is no ticket offered (even with connections), will have the value of zero, 

expected to have a negative impact on the demand, as its value increases; 

• Total travel time (in hours), expected to have a negative impact on the demand, as its value 
increases. Corresponds to the time required to reach the destination from the departing time of 

the first flight and includes the time waiting for ground connections, for non-direct flights; 

• Straight line distance (in nautical miles), between origin and destination airports, expected to 

have a positive impact on the demand, as its value increases; 

• Frequency of direct flights, for the period of analysis (one month). If there is no direct flight, the 
value will be zero, expected to have a positive impact on the demand, as its value increases; 

• Product of the number of hotel beds/capita, from the origin and destination, expected to have a 

positive impact on the demand, as its value increases, due to the importance of tourism; 

• Dummy variable equal to 1 if there is a cruise ship terminal in the location. One variable for 

origin and one for destination, expected to have a positive impact on the demand, as its value 
increases, due to the arrival and departure of, respectively, embarking and disembarking cruise 

ship passengers; 

• A Dummy variable to be used as an offset variable, which would have the value of 1 for the 

biggest markets, and the value of 0 for the smaller markets. 

 

With the data collected, the first step carried out was to run a negative binomial regression, in order to 
verify the result of the Lagrange test, that would indicate the adequacy of this model type. The Lagrange 
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multiplier test gave a non-significant value, as seen in Table 13, which led to the decision that a Poisson 

regression would be a better option for this dataset. 
Table 13: Result of the Lagrange multiplier test 

 Chi-Square df Sig. 
Ancillary Parameter 0.031 1 0.859 

 

5.5. Regression analysis 
 

Having taken the decision to use a Poisson regression, the next step was to attempt to use a fixed scale 

parameter method. Running this regression, the following results were obtained: 
 

Table 14: Test of Model effects for the first regression 

Source Wald-Chi Square Sig. 
(Intercept) 2136.234 0.000 

Sea connection 22.410 0.000 

Direct Flight 5.685 0.017 

Cruise availability (O) 427.836 0.000 

Cruise availability (D) 303.122 0.000 

Population Product 175.005 0.000 

Travel Time 743.112 0.000 

Distance 2037.116 0.000 

Frequency of Flights 2425.649 0.000 

Gdp/capita Product 1777.669 0.000 

Cost Ticket Air 228.769 0.000 

Product of beds/capita 524.395 0.000 

% over 60 (O) 29.085 0.000 

% over 60 (D) 22.087 0.000 

Cost Ticket ferry Boat 5.010 0.025 
 

Table 15: Goodness-of-fit values for the first regression. 

 Value df Value/df 
Deviance 5432.081 49 110.859 

Scaled Deviance 5432.081 49  

Pearson Chi-Square 6920.854 49 141.242 

Scaled Pearson Chi-

Square 

6920.854 49  

Log Likelihood -2909.472   

AIC 5848.944   
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Looking at the deviance value, which is significantly greater than 1, it was concluded that for this dataset, 

a fixed scale parameter method was not suitable, and the Pearson chi-square scale parameter method 

would be the acceptable option. Then, the next step was to evaluate which variables were significant, 

and would be included in the model, and which variables were not significant, and would be excluded 

from the model. 

 

An extensive “trial and error” procedure was carried out, adding variables one by one, verifying its 
statistical significance and coefficient for predicting demand. It was also attempted to use different 

versions of the variables which were being excluded, in order to try and find other significant variables 

to include in the model. Hence, by using the logarithm of the product of the origin and destination 

population, this variable became significant and had a positive coefficient, which was expected, and 

agrees with published articles. This led to the replacement of the product of the population with the 

logarithm of the product of the population. 

 

It was attempted, for the remaining variables which were not considered significant, to use the logarithm, 
exponential or dividing one by another, in various logic combinations, without success. This led to the 

decision that the model already had a reasonable number of explanatory variables, for the dataset. 

 

The variables which were not significant, hence not included in the model were: 

• Cost of the ferry boat ticket, believed not to be significant due to the fact that these prices are 

fixed, and very similar for almost all O/D pairs; 

• Existence of ferry boat connection between origin and destination; 

• Percentage of inhabitants over 60 years old, either at the origin or destination; 

• Existence of a direct flight between origin and destination. 

• GDP/capita, which is one of the most common variables used in this type of regression. It is 
believed that it was not significant in this case, because there is no publicly available data of 

GDP for each specific island. Hence, it was required to use the available data which exists for 

each NUT3 in Greece. This brings a problem which is the fact that, since several islands are on 

the same NUT3, the model considers the same value of GDP. The result is making this variable 

non-significant for this dataset, which lead to its exclusion from the regression. 

• Hotel beds/capita; 

• Cruise availability. 
 

After this, the variables that were considered significant were: 

• Travel time; 

• Distance; 

• Frequency of flights; 

• Cost of air ticket; 

• Product of the population in the origin and destination; 
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5.6. Final model 
 

The final step was to gather key performance indicators on a small group of the best performing models, 

and compare the indicators of each model, in order to choose the final model to be used. This is 

presented in Table 16. 

 
Table 16: KPI's of the different predictive model candidates 

Model M1 M2 M3 M4 M5 

offset included? No No Yes No Yes 

 Beta Std 
Dev. Beta Std 

Dev. Beta Std Dev. Beta Std Dev. Beta Std Dev. 

Intercept 2.56*** 0.63 2.21*** 0.47 2.21*** 0.45 3.57*** 0.66 3.38*** 0.51 
Log Population 

Product 0.56*** 0.12 0.30** 0.14 0.30** 0.10 0.47*** 0.11 0.19* 0.09 

Distance 0.01* 0.01 0.01*** 0.01 0.01*** 0.02 0.01** 0.01 0.01*** 0.01 

Frequency of flights 0.09*** 0.02 0.10*** 0.02 0.11*** 0.02 0.07*** 0.02 0.07*** 0.02 

Cost ticket air -0.01* 0.01 ---------- -------- ---------- ----------- -0.01* 0.01 ---------- ----------- 

Big market ---------- ---------- 0.10*** 0.29 ---------- ----------- ---------- ----------- ---------- ----------- 

Travel time ---------- ---------- ---------- ------- ---------- ----------- -0.46* 0.21 -0.55** 0.12 

Goodness of fit: 

AIC 8710.9 7414.4 7412.4 7749.1 6339.7 

log-likelihood -4350.5 -3702.2 -3702.2 -3868.6 -3164.8 

Deviance 8314.1 7017.5 7017.5 7350.3 5942.8 

Pseudo R2 0.687 0.734 0.734 0.722 0.772 
R2 (Domencich and 
Macfaden (1975)) 1 1 1 1 1 

 

Table 17: Key for the p-values of the explanatory variables 

*: P value<=0.15 

**: P value<0.10 

***: P value<0.01 
 
The Akaike's Information Criterion (AIC), the Log Likelihood and the Deviance were extracted directly from SPSS, 
while the Pseudo R2 was calculated through: 

𝜌( = 1 −
𝐿𝐿(𝛽𝑈)
𝐿𝐿(𝛽𝑅) 

(35) 

 

with 𝐿𝐿(𝛽𝑈) the log-likelihood of the unrestricted model, and 𝐿𝐿(𝛽𝑅) the log-likelihood of the restricted 

model. With the pseudo R2 calculated, the R2 was obtained through the empirical relation set by [46]. 
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After carefully assessing the key parameter indicators of these 5 models, it was decided to calculate the 

demand for models 2 and 5, which were the models with the best indicators. 

 

 
Figure 10: Comparison between expected and real values for model 2 on a linear scale 

 

 

 
Figure 11: Comparison between expected and real values for model 2 on a logarithmic scale 

 

After calculating this demand, the actual demand was compared with the predicted demand for the 66 
routes, for which there is real world data available. This comparison was plotted into a chart, using the 

values in linear and logarithmic scales, which are presented in Figures 10 and 11 for model 2, and 

figures 12 and 13 for model 5. For the remaining models which were not used in the optimization, the 

equivalent plots are included in the appendix. 
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Figure 12: Comparison between expected and real values for model 5 on a linear scale 

 

 
Figure 13: Comparison between expected and real values for model 5 on a logarithmic scale 

As a result, it was concluded that, although model 5’s indicators suggested better predictive 

performance, this model is strongly overestimating the demand for the smaller markets, and slightly 

overestimating for the bigger markets. Since the model is applicable to PSO routes, which are 

characterized by low demand, the decision that model 2 was the most suitable choice was made, due 

to the fact that the predicted values are closer to the actual values. 
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For the optimization model, these will be the demands to be fulfilled, for the two networks: 

 
Table 18: Demand values for each O/D pair for the Rhodes network 

Rhodes demand 

 Arrival 
Astypalaia Kalymnos Karpathos Kasos Kastelorizo Kos Leros Rhodes 

Departure 

Astypalaia  1 2 1 2 2 1 7 

Kalymnos 1  2 2 2 1 4 1 

Karpathos 2 2  11 2 1 2 57 

Kasos 1 2 7  1 2 2 16 

Kastelorizo 2 2 2 1  2 2 45 

Kos 2 4 2 2 2  2 4 

Leros 1 2 2 2 2 2  1 

Rhodes 4 1 57 19 41 29 1  

 

Table 19: Demand values for each O/D pair for the Thessaloniki network 

Thessaloniki demand 

 Arrival 
Chios Ikaria Kalamata Kerkyra Limnos Samos Skyros Thessaloniki 

Departure 

Chios  2 8 1 7 3 2 179 

Ikaria 2  7 10 4 2 2 64 

Kalamata 8 7  1 8 9 5 128 

Kerkyra 11 10 2  7 1 5 2 

Limnos 5 4 8 7  4 2 63 

Samos 3 2 9 13 12  3 98 

Skyros 2 2 5 5 2 3  8 

Thessaloniki 187 88 144 1 56 110 14  
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6. Analysis and Discussion 
 

After running the optimization through the Fico Xpress software, satisfactory results were obtained in 

both networks. They will be presented and discussed in this chapter, one network at a time. As a 
reference, the calculation was performed in a Windows 10 Pro operating system, running in a computer 

with an Intel(R) Core(TM) i7-3770K CPU @ 3.50 GHz, and 8 GB of RAM memory. 

 

6.1. Application to Rhodes Network 
 

This network is considerably smaller than the network “based” in Thessaloniki (the current total costs of 

the Rhodes network are 42% of the value of the current total costs of the Thessaloniki network). At the 

beginning, with all the inputs for the model defined, “virtual constraints” were added, with the objective 
of accelerating the convergence towards the optimal solution. Examples of these virtual constraints are 

restricting the number of flights for each route (e.g. routes with no frequency imposition from the PSO 

or low demand, would have imposed a maximum of one frequency). Another virtual constraint that was 

attempted, was imposing that for every period of time, either no aircraft would depart the hub, or all the 

fleet would depart the hub, in an effort to promote the “hub effect”, and increase the number of 

passengers whose itinerary would be satisfied by connecting flights, reducing the total amount of flights. 

 

Unfortunately, although this technique significantly reduced the computational times required for the 
solutions to be determined by the software package, after carefully analyzing the solutions provided, it 

was decided that these “virtual constraints” were not valid, because they were removing from the range 

of possible solutions, solutions which had lower total costs, besides following all the real constraints. 

Hence, the decision to remove these virtual constraints was taken, with the purpose of achieving the 

real optimal solution, at the expense of longer computational solving periods. 

 

Another constraint that was not initially set, but after analyzing the result of the initial optimization 
calculations by the software was implemented, was the specification that each flight could not be 

repeated within less than 3 hours of another flight on the same route (i.e. a flight from A to B can only 

happen with more than 3 hours of interval from another flight from A to B). This had to be specified 

because the model was violating this condition in early solutions, and in reality having flights on the 

same route one immediately after the other only makes sense in very high demand routes (as is the 

example of the Lisbon – Porto city pair), not PSO routes.  
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Figure 14: Key data provided by the optimization software, relative to the Rhodes network 

 
This last constraint increased significantly the computational time (around 50%), but was seen as 

mandatory in order to present a plausible solution. The optimal solution for the Rhodes network was 

obtained after 14 hours and 41 minutes, with an optimality gap of 8.58%, as it can be seen from Figures 

14 and 15. 

 

 
Figure 15: Plots presenting the evolution of the objective versus time, for the Rhodes network 
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The costs associated with this solution, and the comparison with the current network’s costs are: 

• Flight operating costs: 48 815€ for a total of 46 flights, compared to 53 771€ for the current 

network, which requires 50 flights, a reduction of 9.2% in cost; 

• Aircraft ground costs: 75€ compared with 0€ for the current network. This increase is 
considered negligible when compared to the other reductions obtained by the model, especially 

having in mind that these 75€ apply for only one aircraft which exceeded the 2 hour limit for 

staying on the ground, for only 30 minutes, and this happened at the hub; 

• Passenger time costs: 3 995€ for the time passengers spent on board, and 860€ for the time 

passengers spent waiting on the ground for a connecting flight, in a total of 4 855€ resulting in 

an average travel time of 1 hour and 17 minutes per passenger, compared with 6 470€ for the 
current network and an average travel time of 1 hour and 44 minutes per passenger. This means 

a reduction of 24.9% in cost; 

• Total cost of the network: 53 745€ compared with 60 241€ for the current network. This means 

a reduction of 10.7% in the total cost of the network, with reductions in all the parameters, except 

a negligible increase from 0 to 75€ in the aircraft ground costs, fulfilling the objective of not only 

reducing the financial costs associated with the network, but also improving the quality of service 
provided to the passengers, through reduction of the door to door travel time. 

 

The model produces a file presenting the results, with all the relevant information. For clarity, some 

results were deleted in order to show the whole range of content included in the file created by the 

software, in Figure 16. 
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Figure 16: Extract of the text file exported by the software with the details of the optimal solution 

 

The movement of aircrafts and passengers in the network were compiled in a graph, visible in Figures 
17, 18 and 19, where each line represents one of the 8 airports and each column represents one hour 

of the day. Each color represents one aircraft, and the numbers associated with each flight represent 

the passengers transported on board. It can be seen that there are 3 aircrafts operating. Horizontal lines 

represent an aircraft which is stopped on the ground in the airport associated with that line, while 

diagonal lines represent the flights. The airport is identified on the left of the line through its IATA 

(International Air Transport Association) code. For clarity, the association between the name of the 

airport and it’s IATA code is shown in Table 20. 

 
Table 20: Key for the airport IATA codes in the Rhodes network 

IATA 
code 

JTY JKL AOK KSJ KZS KGS LRS RHO 

Airport Astypalaia Kalymnos Karpathos Kasos Kastelorizo Kos Leros Rhodes 
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Figure 17: Representation of the flights from 08:00 to 13:00 in the Rhodes network 

 

 
Figure 18: Representation of the flights from 13:00 to 19:00 in the Rhodes network 
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Figure 19: Representation of the flights from 19:00 to 00:00 in the Rhodes network 

 
One of the immediate conclusions is the fact that there are several flights operated with zero passengers 

transported. This is a result of the nature of this network, inserted in a PSO scheme, as its main goal is 

not profitability, but assuring accessibility to these low demand regions, hence the need for government 

subsidies. The fleet used in this network was based on the real life fleet operating these routes and is 

comprised of 2 ATR42 aircraft (with 48 seats each) and 1 Dash 8 Q100 (with 37 seats). 

 

6.2. Application to Thessaloniki Network 
 
This network is, as already mentioned, significantly larger than the one discussed above. After realizing 

that applying the virtual constraints was actually excluding optimal and valid solutions from the solution 

domain, it was decided to run this optimization right from the start without applying the virtual constraints 

which had been removed during the optimization of the previous network. This decision was taken with 

the objective of guaranteeing that the software would consider every valid solution, at the expense of 

longer computational times. The optimal solution was found after 5 hours and 30 minutes, with an 

optimality gap of 11.26%, as it can be seen in Figure 20, alongside with more information. The model 

was then left running for another 15 hours, without successfully finding any other solution, as visible in 
Figure 21. 
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Figure 20: Key data provided by the optimization software, relative to the Thessaloniki network 

 

 
 

Figure 21: Plots presenting the evolution of the objective versus time, for the Thessaloniki network. 
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The costs associated with this solution, and the comparison with the current network’s costs are: 

• Flight operating costs: 117 978€ for a total of 54 flights, compared to 134 424€ for the current 

network, which requires 62 flights, a reduction of 12.2% in cost; 

• Aircraft ground costs: 225€ compared with 0€ for the current network. This increase is 

considered negligible when compared to the other reductions obtained by the model, because 
as happened with the Rhodes network, this value is due to only one aircraft exceeding for 30 

minutes the 2 hours on the ground, and this happened at Thessaloniki airport (considered the 

“hub”); 

• Passenger time costs: 21 900€ for the time passengers spent on board the aircraft, and 3 

565€ for the time passengers spent waiting on the ground for a connecting flight, in a total of 25 

465€ resulting in an average travel time of 1 hour and 52 minutes per passenger, compared 
with 27 637€ for the current network and an average travel time of 2 hours and 02 minutes per 

passenger. This means a decrease of 7.86% in cost; 

• Total cost of the network: 143 668€ compared with 162 061€ for the current network. This 

means a reduction of 11.3% in the total cost of the network, having reduced once again both 

the direct financial costs to the airlines, as well as the time costs for the passengers. The 

explanation for the smaller improvements in this network’s optimization, when compared to 
those obtained in Rhodes network’s is thought to be related to the fact that, being a network 

with larger geographical distances and restrictions, there is a smaller margin for improvement. 

Moreover, the network’s characteristics have a greater similarity to those of a normal (non-

subsidized) network, when compared with Rhodes network’s characteristics. 

 

As with the previous network, an extract from the file obtained from the model with the results of the 

optimization and the graph demonstrating the flights in the network is presented in Figure 22. 

 

 
Figure 22: Extract of the text file exported by the software with the details of the optimal solution 
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Figures 23, 24 and 25 represent the flights of this network, and once again the airports are represented 

by their IATA codes. Table 21 relates the airport’s name and its IATA code. 
 

Table 21: Key for the IATA codes of the airports in the Thessaloniki network 

IATA 
code 

JKH JIK KLX CFU LXS SMI SKU SKG 

Airport Chios Ikaria Kalamata Kerkyra Limnos Samos Skyros Thessaloniki 

 

 

 

 

 
Figure 23: Representation of the flights from 08:00 to 13:00 in the Thessaloniki network 
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Figure 24: Representation of the flights from 13:00 to 19:00 in the Thessaloniki network 

 

 

 
Figure 25: Representation of the flights from 19:00 to 00:00 in the Thessaloniki network 
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This network is, once again, clearly more complex than the previous network. Now there is a fleet of 5 

aircraft in operation, comprised of 2 dash 8 Q100 (37 seats), 2 dash 8 Q400 (78 seats) and 1 ATR 42 

(48 seats), based on real world information collected from the fleet operating these routes. 

 

It is clear that, without any flight concentration constraint imposed mathematically, the model used  the 

Thessaloniki airport as a hub, converging flights into and out of that airport at the same time, in order to 

increase the number of connecting passengers, reducing the overall number of flights required. Besides 
this, due to the significant imposition of flights by the PSO, there are still some flights being operated 

without passengers allocated to them. Nevertheless, these flights still have to be operated, to satisfy the 

public service requirements imposed (and financed) by the PSO. 
 

6.3. Exploring Scenarios 
 

As mentioned before, there were two demand model candidates considered statistically viable in chapter 

5, but model 2 was preferred to model 5, due to the fact that it was considered that model 5, although 

performing better in terms of KPI’s, with better values in LL, or AIC was overestimating the demand too 
significantly, which led the decision to use model 2 as the final demand model. With the results obtained 

by model 2 already presented above, the demand values provided by model 5 were used in order to 

perform a sensitivity analysis, and verify if the improvement in the results varied significantly with this 

new demand. The optimization was run with the new demand for the Rhodes and Thessaloniki networks 

and the results will be presented next. 

 

6.3.1. Rhodes Network 
 

• Flight operating costs: 48 815€ for a total of 47 flights, compared to 53 771€ for the current 

network, which requires 50 flights, a reduction of 9.2% in cost. Interestingly, this is the same 
value of flight operating costs for the optimization that was performed with the previous demand 

model. It is believed this is explained by the fact that since this network has such a low demand, 

and a comparatively high amount of imposed flights (by the PSO), the model does not need to 

exceed the imposed flights unless demand increases significantly; 

• Aircraft ground costs: 0€ compared with 0€ for the current network. This means that in this 

optimization, the model was able to avoid leaving an aircraft on the ground for more than 2 

hours, compared to the previous calculation (with the main demand model), where the solution 
implied an aircraft staying for 2 hours and 30 minutes on the ground; 

• Passenger time costs: 6 820€ for the time passengers spent on board the aircraft, and 2 465€ 

for the time passengers spent waiting on the ground for a connecting flight, in a total of 9 285€ 

resulting in an average travel time of 1 hour and 42 minutes per passenger, compared with 19 

042€ for the current network and an average travel time of 3 hours and 30 minutes per 

passenger. These costs were calculated for the new values of demand, as a higher demand for 
passengers will imply higher overall social costs. This optimization obtained a reduction of 
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51.2% in cost. This value is obviously very significant, and the proposed explanation for such a 

high value is the demand model imposing a demand too high for the current network, which is 

not prepared for it, leading to long waiting times in routes that are being considered as having 

high demand; 

• Total cost of the network: 58 100€ compared with 72 813€ for the current network. This means 

a reduction of 20.2% in the total cost of the network, with reductions in all the parameters. This 
higher improvement of the optimized network when compared to the previous demand model, 

is obviously driven by the significant reduction of the passenger time costs, but validates the 

quality of the results obtained by the previous optimization, whose demand input is expected to 

be more exact. 
 

6.3.2. Thessaloniki network: 
 

• Flight operating costs: 138 815€ for a total of 67 flights, compared to 134 424€ for the current 

network, which requires 62 flights, an increase of 3% in cost. This result is obviously not 

satisfactory, but it is expected that with such an increase in demand (given by this alternative 
demand model), from 1357 to 1861 passengers in the network (an increase of 37%), would 

require more flights being performed in the “current” network for the comparison to be fair, which 

was not considered, due to the fact that there is no reliable way of estimating this increase in 

flights. Hence, this remark is made, and the current cost obtained by real values from the 

network is considered; 

• Aircraft ground costs: 75€ compared with 0€ for the current network. As it was commented 
on the previous demand model, this increase is considered negligible when compared to the 

other reductions obtained by the model and this value is due to only one aircraft exceeding for 

30 minutes the 2 hours on the ground, and this happened at Thessaloniki airport (considered 

the “hub”), hence this slight increase is not considered relevant to the results; 

• Passenger time costs: 31 855€ for the time passengers spent on board the aircraft, and 9 

265€ for the time passengers spent waiting on the ground for a connecting flight, in a total of 41 

120€ resulting in an average travel time of 2 hours and 12 minutes per passenger, compared 
with 53 155€ for the current network and an average travel time of 2 hours and 51 minutes per 

passenger. This means a decrease of 22.6% in cost; 

• Total cost of the network: 180 010€ compared with 187 579€ for the current network. This 

means a reduction of 4% in the total cost of the network, having increased direct financial costs 

to the airlines, but reduced the time costs for the passengers. The key driver for the weaker 

performance of this optimization compared to the previous demand was the fact that the flight 
operating costs increased significantly on these optimized networks (an increase of 17.7% 

between demand models), and the flight operating costs of the current network were kept 

constant.  
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Nevertheless, this result is thought to validate the quality of the results presented above, proving that 

even though running significantly different demand models, the optimization model was always able to 

present significant improvements (ranging from 6.8 to 28.7%) in the total cost of the network, reducing 

always both the direct cost to the airlines and the indirect time costs for the passengers. 

 

6.3.3. Different Scenarios 
 

Besides the results already presented in this chapter, different scenarios were considered during this 

thesis, in an attempt to achieve better results. These results will be briefly discussed in the following 

paragraphs. 

 

One of the attempts was to re-design the network, in terms of the impositions by the PSO. Hence, 

different configurations were attempted in the optimization model, in order to compare the obtained 

result with the best result already achieved for that particular network. To do this, by looking at the 
demand values obtained, and to the geographical position of the different islands, new possible 

configurations were attempted, as well as one network where the PSO imposition was that every island 

had to have a direct flight to its network’s hub. Unfortunately, none of these attempted networks resulted 

in a better overall cost, which led them to be discarded. 

 

Furthermore, it was attempted to divide the optimization into two different days. The first day, would 

have flights imposed for all of the routes which have a PSO in force, but would have less frequencies in 
the busier routes. The remaining flights would be fulfilled in the second day, which would only have 

these remaining frequencies imposed. The reasoning behind this attempt was to “relieve” the network 

from so many flights for certain routes, which are flown with no passengers assigned, in the result of the 

optimization. This attempt also resulted in a higher total cost and ended up being discarded as well. 

Nevertheless, one interesting conclusion from this attempt was that, in the second day, the software 

only took 11 seconds to reach the optimal solution, although the network still had 8 airports and 33 time 

periods. This demonstrates that the reason behind the long computational times comes from the 

complex demand, frequencies and seat number impositions from the full network. 
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7. Conclusions and Future Research 
 

In this chapter, the conclusions of the research will be presented, followed by an analysis of its limitations 

and a suggestion of future work. 
 

7.1. Conclusions 
 
The present work adapted a published optimization model ( [18], [19]), in order to apply it to two case 

studies situated in the Greek PSO network. It demonstrated that the network can be improved, not only 

from a financial point of view, but also regarding passenger level of service.  

 

One of the main strengths of this work is combining both the development of a predictive model and a 

flight scheduling and fleet optimization model. The predictive model was developed following all the 

commonly accepted practices (using as references the published literature such as [21] and [22]), in 

order to maximize the quality of the demand prediction. The dataset presented challenges for the 
development of the GZLM, such as significant overdispersion of data, which led to the rejected attempt 

to use a Negative binomial regression, followed by a Poisson regression with a Pearson chi-square 

scale parameter method. This resulted in the inability to use as many explanatory variables as initially 

intended, due to their statistical non-significance. These variables were suggested as a result from a 

comprehensive literature review and analysis into the particularities of the Greek market. Nevertheless, 

two demand models complied with the desired level of performance in the evaluated KPI’s, and were 

tested in the optimization model. 
 

With the predictive model developed, the case studies were presented, and the basis for comparison 

was defined, by quantifying the costs of the current network. The two case studies represent, within the 

same country, networks with different characteristics, in terms of number of passengers carried, size of 

operating fleet and geographical distances. This was done with the objective of allowing a broader 

characterization of the Greek market.  

 

The optimization resulted in significant improvements, in the order of 10% in both networks, while 
following all the constraints specified, in order to properly characterize the particularities of the Greek 

PSO market. The process faced several challenges in its implementation, particularly the considerable 

complexity of the problem under analysis, in terms of amount of routes, fleet size and amount of time 

periods. These challenges meant that a significant amount of effort had to be put into improving the 

mathematical formulation, achieving a much simpler but less intuitive formulation which allowed for the 

solving of the problem by a consumer level computer. Also, a significant amount of attention was put 

into imposing virtual constraints and pre-processing of data, which accelerated the solving process, 

while not excluding the optimal solutions from the scope of analysis. 
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7.2. Limitations 
 
This research holds some limitations, which should be acknowledged by the readers. Firstly, regarding 

the results of the predictive model, its inherent uncertainty should not be disregarded. Every predictive 

model has an associated uncertainty [25] and this dataset, with challenging characteristics, will not be 

an exception. This is partly explained by the lack of data available and by the low demand values for 

these O/D pairs and is demonstrated by the significant difference in the prediction between the two final 

candidates for demand model. 

 
Moreover, regarding the optimization model, although 48 hours is an acceptable duration for running 

this computation, required twice a year, its convergence towards optimality is limited. This is 

demonstrated by the difficulty for the model to improve solutions. After finding the first solution, and 

running for three times that duration, no additional improvements were achieved. Also, the optimality 

gap of the calculations was around 8% which is not ideal, although significant attention was put into the 

pre-processing and virtual constraints, in order to improve such situation.  

  

7.3. Future Work 
 
This research opens several opportunities for future research, which will be discussed in the following 

paragraphs. 

 
From the point of view of the predictive model, only data from 240 O/D pairs was analyzed. In Greece, 

there are at least 40 airports operating commercially at the time of this research, which means there are 

1560 possible O/D pairs for a comprehensive predictive model of the Greek market. Hence, there are 

several research opportunities to expand the scope of this model. Also, there is an opportunity to 

develop a research in partnership with Greek authorities that could facilitate the required data for it, 

which would integrate more explanatory variables. This could make the GDP/capita a statistically 

significant explanatory variable, if data from each specific island could be obtained. More attention into 
attempting to obtain significance from variables related to the importance of tourism and of the 

competition of the ferry boat service is also an important opportunity. 

 

Regarding the optimization model, there are several research opportunities to build on the present work. 

One interesting opportunity, is to develop a similar research, but optimizing the network for the winter 

months, using demand data from that period. Then, an in depth comparison between both networks 

should bring interesting data, in a market with such a strong effect from seasonality, mostly due to 

tourism. Another interesting opportunity is to perform a similar research, but involving a bigger network, 
up to all the Greek market, with 40 airports, and taking into account all the PSO impositions and 

constraints describing the whole market.  
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Another interesting opportunity is to perform a follow-up analysis of this research, just like Antunes et 

al. [41] performed, on the 2013 paper [18], working in close relationship with the airline operating the 

PSO network in the Azores. This could better quantify the real costs associated with the operation, and 

analyze in depth how could a previous period of operation be improved, from where all the data was 

already processed and available. 

 

The last suggestion of further research based on this work is to perform a more comprehensive analysis, 
including the effect of ticket pricing on demand. This is a complex iterative analysis, because price 

affects demand, and vice-versa. Besides this, because the PSO networks have prices imposed, there 

is less freedom for the airline in terms of pricing, which could reduce the complexity of this analysis, only 

having to consider pricing in the routes not belonging to the PSO network. 
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9. Appendix 
9.1. Plots of predicted vs real demand 

 
 

 
Figure 26: Comparison between expected and real values for model 1 on a linear scale 

 
 

 
Figure 27: Comparison between expected and real values for model 1 on a logarithmic scale 
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Figure 28: Comparison between expected and real values for model 3 on a linear scale 

 
 
 

 
Figure 29: Comparison between expected and real values for model 3 on a logarithmic scale 
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Figure 30: Comparison between expected and real values for model 4 on a linear scale 

 
 
 
 

 
Figure 31: Comparison between expected and real values for model 4 on a logarithmic scale 
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